Skip to main content

Integration of AI and IoT Approaches for Evaluating Cybersecurity Risk on Smart City

  • Chapter
  • First Online:
Artificial Intelligence-based Internet of Things Systems

Part of the book series: Internet of Things ((ITTCC))

Abstract

Cities have adopted the smart city model based on decision-making to maintain their sustainability and resilience. The decision-making process on a smart city is based on data generated in real-time for the city’s senzorization layer of physical components. For this goal, the digital abstraction of the physical aspects of city using digital twin to simulate scenarios to understand behaviors of a particular event. This study analyzes the use of artificial intelligence techniques and the IoT used in digital twin approaches to analyze cybersecurity risks in the smart city environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United Nations. (2020). Smart cities for sustainable development. United Nations University. [online] Available at: https://unu.edu/projects/smartcitiesfor-sustainabledevelopment.html. Accessed 23 Sept 2020.

  2. Sivrikaya, F., Ben-Sassi, N., Dang, X.-T., Gorur, O. C., & Kuster, C. (2019). Internet of smart city objects: A distributed framework for service discovery and composition. IEEE Access, 14434–14454. https://doi.org/10.1109/access.2019.2893340

  3. Gordon, L., & McAleese, G. (2020). Resilience and risk management in smart cities. [online] Center for Infrastructure Protection & Homeland Security. Available at: https://cip.gmu.edu/2017/07/06/resilience-risk-management-smart-cities/. Accessed 17 Sept 2020.

  4. Andrade, R. O., & Yoo, S. G. (2019). A comprehensive study of the use of LoRa in the development of smart cities. Applied Sciences, 9, 4753.

    Article  Google Scholar 

  5. Kaur, M. J., Mishra, V. P., & Maheshwari, P. (2019). The convergence of digital twin, IoT, and machine learning: Transforming data into action. Digital Twin Technologies and Smart Cities, 3–17. https://doi.org/10.1007/978-3-030-18732-3_1

  6. Alagar, V., & Wan, K. (2019). Understanding and measuring risk due to uncertainties in IoT. 2019 IEEE international conference on Smart Internet of Things (SmartIoT). https://doi.org/10.1109/smartiot.2019.00088

  7. Wu, W., Kang, R., & Li, Z. (2015). Risk assessment method for cybersecurity of cyber-physical systems based on inter-dependency of vulnerabilities. 2015 IEEE international conference on industrial engineering and engineering management (IEEM). https://doi.org/10.1109/ieem.2015.7385921

  8. Renn, O. (2020). New challenges for risk analysis: Systemic risks. Journal of Risk Research, 1–7. https://doi.org/10.1080/13669877.2020.1779787

  9. Frigault, M., Wang, L., Singhal, A., & Jajodia, S. (2008). Measuring network security using dynamic Bayesian network, 23–30. https://doi.org/10.1145/1456362.1456368

  10. Zhang, Q., Zhou, C., Xiong, N., Qin, Y., Li, X., & Huang, S. (2016, October). Multimodel-based incident prediction and risk assessment in dynamic cybersecurity protection for industrial control systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(10), 1429–1444. https://doi.org/10.1109/TSMC.2015.2503399

    Article  Google Scholar 

  11. Poolsappasit, N., Dewri, R., & Ray, I. (2012, January/February). Dynamic security risk management using Bayesian attack graphs. IEEE Transactions on Dependable and Secure Computing, 9(1), 61–74.

    Article  Google Scholar 

  12. Xie, P., Li, J. H., Ou, X., Liu, P., & Levy, R. (2010, June). Using Bayesian networks for cyber security analysis. In Proceeding of the IEEE/IFIP international conference of dependable systems and networks (DSN), Chicago, IL, USA, pp. 211–220.

    Google Scholar 

  13. Wrona, K., & Hallingstad, G. (2010). Real-time automated risk assessment in protected core networking. Telecommunication Systems, 45(2–3), 205–214.

    Article  Google Scholar 

  14. Szpyrka, M., Jasiul, B., Wrona, K., & Dziedzic, F. (2013). Telecommunication networks risk assessment with Bayesian networks. In Computer information systems and industrial management (LNCS 8104) (pp. 277–288). Springer.

    Chapter  Google Scholar 

  15. Zhang, Q., Zhou, C., Tian, Y., Xiong, N., Qin, Y., & Hu, B. (2018). A fuzzy probability Bayesian network approach for dynamic cybersecurity risk assessment in industrial control systems. IEEE Transactions on Industrial Informatics, 14, 2497–2506.

    Article  Google Scholar 

  16. Wang, J., Neil, M., & Fenton, N. (2020). A Bayesian network approach for cybersecurity risk assessment implementing and extending the FAIR model. Computers and Security, 89, 101659.

    Article  Google Scholar 

  17. Zhu, Q., Qin, Y., Zhou, C., & Gao, W. (2018). Extended multilevel flow model-based dynamic risk assessment for cybersecurity protection in industrial production systems. International Journal of Distributed Sensor Networks, 14, 155014771877956.

    Article  Google Scholar 

  18. Onisko, A., & Marshall Austin, R. (2015). Dynamic bayesian network for cervical cancer screening. Lecture Notes in Computer Science, 207–218. https://doi.org/10.1007/978-3-319-28007-3_1

  19. Mohammadi, N., & Taylor, J. E. (2017). Smart city digital twins. 2017 IEEE symposium series on computational intelligence (SSCI). https://doi.org/10.1109/ssci.2017.8285439

  20. Mihajlovic, V., & Petkovic, M. (2001). Dynamic Bayesian networks: A state of the art. University of Twente.

    Google Scholar 

  21. Cabañas, R. (2011). Reconocimiento de gestos mediante Redes Bayesianas Dinámicas. USLM.

    Google Scholar 

  22. Dembski, F., Wössner, U., Letzgus, M., Ruddat, M., & Yamu, C. (2020). Urban digital twins for smart cities and citizens: The case study of Herrenberg, Germany. Sustainability, 12(6), 2307. https://doi.org/10.3390/su12062307

    Article  Google Scholar 

  23. Gartner. (2020). Top 10 strategic technology trends for 2017: Digital twins. [online] Available at: https://www.gartner.com/en/documents/3647717. Accessed 23 Sept 2020.

  24. Smart Cities World. (2020). The rise of digital twins in smart cities. [online] Available at: https://www.smartcitiesworld.net/special-reports/special-reports/the-rise-of-digital-twins-in-smart-cities. Accessed 21 Sept 2020.

  25. Fuller, A., Fan, Z., Day, C., & Barlow, C. (2020). Digital twin: Enabling technologies, challenges and open research. IEEE Access, 108952–108971. https://doi.org/10.1109/access.2020.2998358

  26. Cronrath, C., Aderiani, A. R., & Lennartson, B. (2019). Enhancing digital twins through reinforcement learning. 2019 IEEE 15th international conference on automation science and engineering (CASE). https://doi.org/10.1109/coase.2019.8842888

  27. Boje, C., Guerriero, A., Kubicki, S., & Rezgui, Y. (2020). Towards a semantic construction digital twin: Directions for future research. Automation in Construction, 114, 103179. https://doi.org/10.1016/j.autcon.2020.103179

    Article  Google Scholar 

  28. Tundis, A., Garro, A., Gallo, T., Saccà, D., Citrigno, S., Graziano, S., & Mühlhauser, M. (2017). Systemic risk modeling and evaluation through simulation and bayesian networks, 1–10. https://doi.org/10.1145/3098954.3098993

  29. Petrova-Antonova, D., & Ilieva, S. (2021). Digital twin modeling of smart cities. In T. Ahram, R. Taiar, K. Langlois, & A. Choplin (Eds.), Human interaction, emerging technologies and future applications III (pp. 384–390). Springer.

    Chapter  Google Scholar 

  30. Dai, Q., Shi, L., & Ni, Y. (2018). Risk assessment for cyber attacks in feeder automation system. 2018 IEEE power & energy society general meeting (PESGM), Portland, OR, 2018, pp. 1–5. https://doi.org/10.1109/PESGM.2018.8586312

  31. Wang, J., Fan, K., Mo, W., & Xu, D. (2016). A method for information security risk assessment based on the dynamic Bayesian network. 2016 International conference on networking and network applications (NaNA), Hakodate, pp. 279–283. https://doi.org/10.1109/NaNA.2016.50

  32. Ahram, T., Taiar, R., Langlois, K., & Choplin, A. (Eds.). (2021). Human interaction, emerging technologies and future applications III. Advances in Intelligent Systems and Computing. https://doi.org/10.1007/978-3-030-55307-4

  33. Austin, M., Delgoshaei, P., Coelho, M., & Heidarinejad, M. (2020). Architecting smart city digital twins: Combined semantic model and machine learning approach. Journal of Management in Engineering, 36(4), 04020026. https://doi.org/10.1061/(asce)me.1943-5479.0000774

    Article  Google Scholar 

  34. Zhang, C., Xu, W., Liu, J., Liu, Z., Zhou, Z., & Pham, D. T. (2019). A reconfigurable modeling approach for digital twin-based manufacturing system. Procedia CIRP, 83, 118–125. https://doi.org/10.1016/j.procir.2019.03.141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto O. Andrade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andrade, R.O., Yoo, S.G., Tello-Oquendo, L., Flores, M., Ortiz, I. (2022). Integration of AI and IoT Approaches for Evaluating Cybersecurity Risk on Smart City. In: Pal, S., De, D., Buyya, R. (eds) Artificial Intelligence-based Internet of Things Systems. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-87059-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87059-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87058-4

  • Online ISBN: 978-3-030-87059-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics