Skip to main content

Deep Convolutional Neural Network for Classifying Satellite Images with Heterogeneous Spatial Resolutions

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

Deep Learning, and most notable Deep Neural Networks, have largely driven Artificial Intelligence in the area of remote sensing, mainly image classification tasks. In this paper, we present an approach based on Convolutional Neural Networks to classify Earth Observation satellite images as environmental preserved or non-preserved areas. One interesting feature of our approach is the fact that we used sensors with different spatial resolutions to assess the performance of a traditional network. We relied on images from the Tocantins Cerrado obtained by the Wide-Scan Multispectral and Panchromatic Camera of the CBERS-4A satellite, with a spatial resolution of 8m to create the training dataset. For testing, we set up a set of images of the Sentinel satellite, with a spatial resolution of 10m from Goiás Cerrado. Results imply that Convolutional Neural Networks are feasible and are a good alternative for classifying remote sensing areas even when dealing with images from various sensors, and also with different spatial resolutions, where the model used in this study obtained an accuracy of 0.87. This study demonstrates the flexibility of Convolutional Neural Networks concerning the ability to generalize knowledge for classifying remote sensing images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.dpi.inpe.br/terralib5/wiki/doku.php.

  2. 2.

    https://imgaug.readthedocs.io/en/latest/.

References

  1. Anwer, R.M., Khan, F.S., de Weijer, J., Molinier, M., Laaksonen, J.: Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification. ISPRS J. Photogrammetry Remote Sens. 138, 74–85 (2018). https://doi.org/10.1016/j.isprsjprs.2018.01.023

    Article  Google Scholar 

  2. Assis, L., et al.: Terrabrasilis: a spatial data analytics infrastructure for large-scale thematic mapping. ISPRS Int. J. Geo-Information 8, 513 (2019). https://doi.org/10.3390/ijgi8110513, http://terrabrasilis.dpi.inpe.br

  3. Assis, T., Amaral, S.: Landscape and population in deforestation areas of the brazilian cerrado: The case of cerrado baiano. In: Proceedings of the XIX Brazilian Symposium on Remote Sensing (2019). https://bityli.com/3TdqJ

  4. Brazil: An area of native vegetation suppressed in the cerrado biome in 2019 was 6,484 km\(^{2}\). National Institute for Space Research (2019). https://bityli.com/d1Jtd

  5. Corrêa, R.: Cerrado: the wealth of tocantins. Portal Tocantins (2020). https://portal.to.gov.br/noticia/2020/9/11/cerrado-a-riqueza-do-tocantins/

  6. Ghassemi, S., Magli, E.: Convolutional neural networks for on-board cloud screening. Remote Sens. 11 (2019). https://doi.org/10.3390/rs11121417

  7. Gonçalves, R.J.: Mining and territorial fracture of the cerrado in goiás. Élisée - Revista De Geografia Da UEG 9 (2020). https://www.revista.ueg.br/index.php/elisee/article/view/10852

  8. Granatyr, J.: Deep learning com python de a a z - o curso completo. Udemy (2019). https://www.udemy.com/share/101uu0AEETcFpXRX8B/

  9. Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., Lew, M.S.: Deep learning for visual understanding: a review. Neurocomputing 187, 27–48 (2016)

    Google Scholar 

  10. Keras: Adam. Keras (2021). https://keras.io/api/optimizers/adam/

  11. Keras: Dropout layer. Keras (2021). encurtador.com.br/drxLT

  12. Keras: Layer activation functions. Keras (2021). https://keras.io/api/layers/activations/

  13. Keras: Maxpooling2d layer. Keras (2021). encurtador.com.br/hszCH

  14. Keras: Probabilistic losses. Keras (2021). encurtador.com.br/rCJ23

  15. Khatami, R., et al.: A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: general guidelines for practitioners and future research. Remote Sens. Environ. 177, 89–100 (2016)

    Article  Google Scholar 

  16. Körting, T.S., Namikawa, L., et al.: How to effectively obtain metadata from remote sensing big data? In: GEOBIA 2016: Solutions and Synergies (2016)

    Google Scholar 

  17. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  18. Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., Johnson, B.A.: Deep learning in remote sensing applications: a meta-analysis and review. ISPRS J. Photogrammetry Remote Sens. 152, 166–177 (2019)

    Article  Google Scholar 

  19. Ma, L., Li, M., Ma, X., Cheng, L., Du, P., Liu, Y.: A review of supervised object-based land-cover image classification. ISPRS J. Photogrammetry Remote Sens. 130, 277–293 (2017)

    Google Scholar 

  20. Mohammadi, M., et al.: A comprehensive survey and taxonomy of the svm-based intrusion detection systems. J. Netw. Comput. Appl. 178, 102983 (2021)

    Article  Google Scholar 

  21. Ribeiro, J. F.; Walter, B.M.T.: Fitofisionomias do bioma cerrado. Cerrado: Ecologia e Flora, EMBRAPA, pp. 152–212 (2008)

    Google Scholar 

  22. Santiago Júnior, V.A., Silva, L.A.R., Andrade Neto, P.R.: Testing environmental models supported by machine learning. In: Proceedings of the III Brazilian Symposium on Systematic and Automated Software Testing, SAST 2018, pp. 3–12. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3266003.3266004

  23. Shawky, O.A., Hagag, A., El-Dahshan, E.S.A., Ismail, M.A.: Remote sensing image scene classification using cnn-mlp with data augmentation. Elsevier 221, 165356 (2020). https://doi.org/10.1016/j.ijleo.2020.165356

  24. Zhang, W., Tang, P., Zhao, L.: Remote sensing image scene classification using cnn-capsnet. Remote Sens. 11, 494 (2019). https://doi.org/10.3390/rs11050494

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mateus de Souza Miranda , Valdivino Alexandre de Santiago Jr , Thales Sehn Körting , Rodrigo Leonardi or Moisés Laurence de Freitas Jr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miranda, M.d.S., de Santiago, V.A., Körting, T.S., Leonardi, R., de Freitas, M.L. (2021). Deep Convolutional Neural Network for Classifying Satellite Images with Heterogeneous Spatial Resolutions. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12955. Springer, Cham. https://doi.org/10.1007/978-3-030-87007-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87007-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87006-5

  • Online ISBN: 978-3-030-87007-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics