Skip to main content

A Matlab-Based Open-Source Toolbox for Artefact Removal from Extracellular Neuronal Signals

  • Conference paper
  • First Online:
Brain Informatics (BI 2021)

Abstract

The neural recordings in the form of local field potentials offer useful insights on higher-level neural functions by providing information about the activation and deactivation of neural circuits. But often these recordings are contaminated by multiple internal and external sources of noise from nearby electronic systems and body movements. However, to facilitate knowledge extraction from these recordings, identification and removal of the artefacts are empirical, and various computational techniques have been applied for this purpose. Here we report a new module for artefact removal, an extension of the toolbox named SANTIA (SigMate Advanced: a Novel Tool for Identification of Artefacts in Neuronal Signals) which allows for fast application of deep learning techniques to remove said artefacts without relying on data from other channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/IgnacioFabietti/SANTIAtoolbox.

References

  1. Al Banna, M.H., Ghosh, T., Taher, K.A., Kaiser, M.S., Mahmud, M.: A monitoring system for patients of autism spectrum disorder using artificial intelligence. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 251–262. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_23

    Chapter  Google Scholar 

  2. Al Nahian, M.J., Ghosh, T., Uddin, M.N., Islam, M.M., Mahmud, M., Kaiser, M.S.: Towards artificial intelligence driven emotion aware fall monitoring framework suitable for elderly people with neurological disorder. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 275–286. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_25

    Chapter  Google Scholar 

  3. Ali, H.M., Kaiser, M.S., Mahmud, M.: Application of convolutional neural network in segmenting brain regions from MRI data. In: Liang, P., Goel, V., Shan, C. (eds.) BI 2019. LNCS, vol. 11976, pp. 136–146. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37078-7_14

    Chapter  Google Scholar 

  4. Bokil, H., Andrews, P., Kulkarni, J.E., Mehta, S., Mitra, P.P.: Chronux: a platform for analyzing neural signals. J. Neurosci. Methods 192(1), 146–151 (2010)

    Article  Google Scholar 

  5. Bologna, L.L., et al.: Investigating neuronal activity by SPYCODE multi-channel data analyzer. Neural Netw. 23(6), 685–697 (2010)

    Article  Google Scholar 

  6. Cui, J., Xu, L., Bressler, S.L., Ding, M., Liang, H.: BSMART: a Matlab/C toolbox for analysis of multichannel neural time series. Neural Netw. 21(8), 1094–1104 (2008)

    Article  Google Scholar 

  7. Fabietti, M., Mahmud, M., Lotfi, A.: Effectiveness of employing multimodal signals in removing artifacts from neuronal signals: an empirical analysis. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 183–193. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_17

    Chapter  Google Scholar 

  8. Fabietti, M., et al.: Adaptation of convolutional neural networks for multi-channel artifact detection in chronically recorded local field potentials. In: Proceedings of SSCI, pp. 1607–1613 (2020)

    Google Scholar 

  9. Fabietti, M., et al.: Artifact detection in chronically recorded local field potentials using long-short term memory neural network. In: Proceedings of AICT, pp. 1–6 (2020)

    Google Scholar 

  10. Furth, K.: Replication data for: neuronal correlates of ketamine and walking induced gamma oscillations in the medial prefrontal cortex and mediodorsal thalamus (2017). https://doi.org/10.7910/DVN/MIBZLZ

  11. Furth, K.E., McCoy, A.J., Dodge, C., Walters, J.R., Buonanno, A., Delaville, C.: Neuronal correlates of ketamine and walking induced gamma oscillations in the medial prefrontal cortex and mediodorsal thalamus. PLoS ONE 12(11), e0186732 (2017)

    Article  Google Scholar 

  12. Garcia, S., et al.: Neo: an object model for handling electrophysiology data in multiple formats. Front. Neuroinform. 8, 10 (2014)

    Article  Google Scholar 

  13. Hazan, L., Zugaro, M., Buzsáki, G.: Klusters, NeuroScope, NDManager: a free software suite for neurophysiological data processing and visualization. J. Neurosci. Methods 155(2), 207–216 (2006)

    Article  Google Scholar 

  14. Islam, M.N., Martin, S.K., Aggleton, J.P., O’Mara, S.M.: NeuroChaT: a toolbox to analyse the dynamics of neuronal encoding in freely-behaving rodents in vivo. Wellcome Open Res. 4, 196 (2019)

    Article  Google Scholar 

  15. Mahmud, M., et al.: An automated method for characterization of evoked single-trial local field potentials recorded from rat barrel cortex under mechanical whisker stimulation. Cogn. Comput. 8(5), 935–945 (2016). https://doi.org/10.1007/s12559-016-9399-3

    Article  Google Scholar 

  16. Mahmud, M., Bertoldo, A., Girardi, S., Maschietto, M., Pasqualotto, E., Vassanelli, S.: SigMate: a comprehensive software package for extracellular neuronal signal processing and analysis. In: Proceedings of NER, pp. 88–91 (2011). https://doi.org/10.1109/NER.2011.5910495

  17. Mahmud, M., Bertoldo, A., Girardi, S., Maschietto, M., Vassanelli, S.: SigMate: a MATLAB-based neuronal signal processing tool. In: Proceedings of IEEE EMBC, pp. 1352–1355 (2010)

    Google Scholar 

  18. Mahmud, M., Bertoldo, A., Girardi, S., Maschietto, M., Vassanelli, S.: SigMate: a Matlab-based automated tool for extracellular neuronal signal processing and analysis. J. Neurosci. Methods 207(1), 97–112 (2012). https://doi.org/10.1016/j.jneumeth.2012.03.009

    Article  Google Scholar 

  19. Mahmud, M., Bertoldo, A., Maschietto, M., Girardi, S., Vassanelli, S.: Automatic detection of layer activation order in information processing pathways of rat barrel cortex under mechanical whisker stimulation. In: Proceedings of EMBC, pp. 6095–6098 (2010). https://doi.org/10.1109/IEMBS.2010.5627639

  20. Mahmud, M., Girardi, S., Maschietto, M., Pasqualotto, E., Vassanelli, S.: An automated method to determine angular preferentiality using LFPs recorded from rat barrel cortex by brain-chip interface under mechanical whisker stimulation. In: Proceedings of EMBC, pp. 2307–2310 (2011). https://doi.org/10.1109/IEMBS.2011.6090580

  21. Mahmud, M., Girardi, S., Maschietto, M., Rahman, M.M., Bertoldo, A., Vassanelli, S.: Slow stimulus artifact removal through peak-valley detection of neuronal signals recorded from somatosensory cortex by high resolution brain-chip interface. In: Dössel, O., Schlegel, W.C. (eds.) World Congress on Medical Physics and Biomedical Engineering. IFMBE, vol. 25/4, pp. 2062–2065. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03882-2_547

    Chapter  Google Scholar 

  22. Mahmud, M., Girardi, S., Maschietto, M., Rahman, M.M., Vassanelli, S.: Noise characterization of electrophysiological signals recorded from high resolution brain-chip interface. In: Proceedings of ISBB, pp. 84–87 (2009)

    Google Scholar 

  23. Mahmud, M., Girardi, S., Maschietto, M., Vassanelli, S.: An automated method to remove artifacts induced by microstimulation in local field potentials recorded from rat somatosensory cortex. In: Proceedings of BRC, pp. 1–4 (2012)

    Google Scholar 

  24. Mahmud, M., Kaiser, M.S., Hussain, A., Vassanelli, S.: Applications of deep learning and reinforcement learning to biological data. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2063–2079 (2018)

    Article  MathSciNet  Google Scholar 

  25. Mahmud, M., Maschietto, M., Girardi, S., Vassanelli, S.: A Matlab based tool for cortical layer activation order detection through latency calculation in local field potentials recorded from rat barrel cortex by brain-chip interface. In: Proceedings of BRC, pp. 1–4 (2012). https://doi.org/10.1109/BRC.2012.6222170

  26. Mahmud, M., Pasqualotto, E., Bertoldo, A., Girardi, S., Maschietto, M., Vassanelli, S.: An automated method for detection of layer activation order in information processing pathway of rat barrel cortex under mechanical whisker stimulation. J. Neurosci. Methods 196(1), 141–150 (2011). https://doi.org/10.1016/j.jneumeth.2010.11.024

    Article  Google Scholar 

  27. Mahmud, M., Travalin, D., Bertoldo, A., Girardi, S., Maschietto, M., Vassanelli, S.: A contour based automatic method to classify local field potentials recorded from rat barrel cortex. In: Proceedings of CIBEC, pp. 163–166 (2010). https://doi.org/10.1109/CIBEC.2010.5716087

  28. Mahmud, M., Travalin, D., Bertoldo, A., Girardi, S., Maschietto, M., Vassanelli, S.: An automated classification method for single sweep local field potentials recorded from rat barrel cortex under mechanical whisker stimulation. J. Med. Biol. Eng. 32(6), 397–404 (2012). https://doi.org/10.5405/jmbe.923

    Article  Google Scholar 

  29. Mahmud, M., Travalin, D., Hussain, A.: Decoding network activity from LFPs: a computational approach. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012. LNCS, vol. 7663, pp. 584–591. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34475-6_70

    Chapter  Google Scholar 

  30. Mahmud, M., et al.: Single LFP sorting for high-resolution brain-chip interfacing. In: Zhang, H., Hussain, A., Liu, D., Wang, Z. (eds.) BICS 2012. LNCS (LNAI), vol. 7366, pp. 329–337. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31561-9_37

    Chapter  Google Scholar 

  31. Matlab: MATLAB. Deep Learning Toolbox R2020a (2017)

    Google Scholar 

  32. Mazzoni, A., Logothetis, N.K., Panzeri, S.: Information content of local field potentials. In: Principles of Neural Coding, pp. 411–429 (2013)

    Google Scholar 

  33. Noor, M.B.T., Zenia, N.Z., Kaiser, M.S., Mahmud, M., Al Mamun, S.: Detecting neurodegenerative disease from MRI: a brief review on a deep learning perspective. In: Liang, P., Goel, V., Shan, C. (eds.) BI 2019. LNCS, vol. 11976, pp. 115–125. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37078-7_12

    Chapter  Google Scholar 

  34. Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.M.: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011 (2011)

    Google Scholar 

  35. Orojo, O., Tepper, J., McGinnity, T.M., Mahmud, M.: A multi-recurrent network for crude oil price prediction. In: Proceedings of IEEE SSCI, pp. 2953–2958 (2019)

    Google Scholar 

  36. Rabby, G., et al.: TeKET: a tree-based unsupervised keyphrase extraction technique. Cogn. Comput. 12(5), 811–833 (2020). https://doi.org/10.1007/s12559-019-09706-3

    Article  Google Scholar 

  37. Ruiz, J., Mahmud, M., Modasshir, Md., Shamim Kaiser, M., For the Alzheimer’s Disease Neuroimaging Initiative: 3D DenseNet ensemble in 4-way classification of Alzheimer’s disease. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 85–96. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_8

    Chapter  Google Scholar 

  38. Sumi, A.I., Zohora, M.F., Mahjabeen, M., Faria, T.J., Mahmud, M., Kaiser, M.S.: fASSERT: a fuzzy assistive system for children with autism using Internet of Things. In: Wang, S., et al. (eds.) BI 2018. LNCS (LNAI), vol. 11309, pp. 403–412. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05587-5_38

    Chapter  Google Scholar 

  39. Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., Leahy, R.M.: Brainstorm: a user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011 (2011)

    Google Scholar 

  40. Watkins, J., Fabietti, M., Mahmud, M.: SENSE: a student performance quantifier using sentiment analysis. In: Proceedings of IJCNN, pp. 1–6 (2020)

    Google Scholar 

  41. Yegenoglu, A., et al.: Elephant-open-source tool for the analysis of electrophysiological data sets. In: Proceedings of Bernstein Conference, pp. 134–135 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mufti Mahmud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fabietti, M., Mahmud, M., Lotfi, A. (2021). A Matlab-Based Open-Source Toolbox for Artefact Removal from Extracellular Neuronal Signals. In: Mahmud, M., Kaiser, M.S., Vassanelli, S., Dai, Q., Zhong, N. (eds) Brain Informatics. BI 2021. Lecture Notes in Computer Science(), vol 12960. Springer, Cham. https://doi.org/10.1007/978-3-030-86993-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86993-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86992-2

  • Online ISBN: 978-3-030-86993-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics