Skip to main content

Self-energy Feynman Diagrams with Four Loops and 11 Internal Lines

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12953))

Included in the following conference series:

Abstract

We consider 4-loop Feynman diagrams with 11 internal lines. The associated 10-dimensional loop integrals are calculated for four diagrams with massive internal lines, and we further handle the massless case of the diagram referenced in the literature as M61. The computations are performed with double exponential (DE), Quasi-Monte Carlo (lattice and embedded lattice rules) and adaptive integration algorithms, which do not require any user input regarding the integrand behavior. The lattice rule methods are combined with a transformation to help alleviate boundary singularities. The embedded lattice rules are implemented in CUDA C and their execution is accelerated using an NVIDIA Quadro GV100 GPU, whereas DE is parallelized over MPI and executed on an AMD cluster. Adaptive integration is performed with the ParInt multivariate integration package, which is also layered over MPI. For the massless M61 diagram we use a dimensional regularization approach and extrapolation. The results will be compared with respect to accuracy and efficiency, and verified with pySecDec.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abi, B., et al.: Measurement of the positive muon anomalous magnetic moment to 0.46 ppm. Phys. Rev. Lett. 126, 141801 (2021). (Muon g-2 Collaboration). https://doi.org/10.1103/PhysRevLett.126.141801

  2. Aoyama, T., et al.: The anomalous magnetic moment of the muon in the standard model. Phys. Rep. 887, 1–166 (2020). https://doi.org/10.1016/j.physrep.2020.07.006

  3. Baikov, B.A., Chetyrkin, K.G.: Four loop massless propagators: an algebraic evaluation of all master integrals. Nucl. Phys. B 837, 186–220 (2010)

    Article  MathSciNet  Google Scholar 

  4. Berntsen, J., Espelid, T.O., Genz, A.: Algorithm 698: DCUHRE-an adaptive multidimensional integration routine for a vector of integrals. ACM Trans. Math. Softw. 17, 452–456 (1991)

    Article  MathSciNet  Google Scholar 

  5. Binoth, T., Heinrich, G.: Numerical evaluation of multi-loop integrals by sector decomposition. Nucl. Phys. B 680, 375 (2004). hep-ph/0305234v1

    Article  Google Scholar 

  6. Borowka, S., Heinrich, G., Jahn, S., Jones, S.P., Kerner, M., Schlenk, J.: A GPU compatible quasi-Monte Carlo integrator interfaced to pySecDec. Comput. Phys. Commun. 240, 120–137 (2019). Preprint: arXiv:1811.11720v1 [hep-ph]. https://arxiv.org/abs/1811.11720. https://doi.org/10.1016/j.cpc.2019.02.015

  7. Borowka, S., et al.: pySecDec: a toolbox for the numerical evaluation of multi-scale integrals. Comput. Phys. Commun. 222, 313–326 (2018). arXiv:1703.09692 [hep-ph]. https://www.sciencedirect.com/science/article/pii/S0010465517303028. https://doi.org/10.1016/j.cpc.2017.09.015

  8. Carter, J., Heinrich, G.: SecDec: a general program for sector decomposition. Comput. Phys. Commun. 182, 1566–1581 (2011)

    Article  Google Scholar 

  9. cgchannel: 28 May 2020. http://www.cgchannel.com/2020/05/review-amd-ryzen-threadripper-3990x/

  10. Cranley, R., Patterson, T.N.L.: Randomization of number theoretic methods for multiple integration. SIAM J. Numer. Anal. 13, 904–914 (1976)

    Article  MathSciNet  Google Scholar 

  11. De Ridder, L., Van Dooren, P.: An adaptive algorithm for numerical integration over an N-dimensional cube. J. Comput. Appl. Math. 2(3), 207–210 (1976)

    Article  Google Scholar 

  12. de Doncker, E., Almulihi, A., Yuasa, F.: High speed evaluation of loop integrals using lattice rules. J. Phys. Conf. Ser. (JPCS), IOP Ser. 1085(052005) (2018). http://iopscience.iop.org/article/10.1088/1742-6596/1085/5/052005

  13. de Doncker, E., Almulihi, A., Yuasa, F.: Transformed lattice rules for Feynman loop integrals. J. Phys. Conf. Ser. (JPCS) IOP Ser. 1136(012002) (2018). https://doi.org/10.1088/1742-6596/1136/1/012002

  14. de Doncker, E., et al.: Quadpack computation of Feynman loop integrals. J. Comput. Sci. (JoCS) 3(3), 102–112 (2011). https://doi.org/10.1016/j.jocs.2011.06.003

    Article  Google Scholar 

  15. de Doncker, E., Genz, A., Gupta, A., Zanny, R.: Tools for distributed adaptive multivariate integration on now’s: ParInt1.0 release. In: Supercomputing 1998 (1998)

    Google Scholar 

  16. de Doncker, E., Kaugars, K., Cucos, L., Zanny, R.: Current status of the ParInt package for parallel multivariate integration. In: Proceedings of Computational Particle Physics Symposium (CPP 2001), pp. 110–119 (2001)

    Google Scholar 

  17. Okada, H., Atluri, S.N. (eds.): ICCES 2019. MMS, vol. 75. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-27053-7

    Book  Google Scholar 

  18. de Doncker, E., Yuasa, F., Almulihi, A., Nakasato, N., Daisaka, H., Ishikawa, T.: Numerical multi-loop integration on heterogeneous many-core processors. J. Phys. Conf. Ser. (JPCS) 1525(012002) (2019). https://doi.org/10.1088/1742-6596/1525/1/012002

  19. de Doncker, E., Yuasa, F., Kato, K., Ishikawa, T., Kapenga, J., Olagbemi, O.: Regularization with numerical extrapolation for finite and UV-divergent multi-loop integrals. Comput. Phys. Commun. 224, 164–185 (2018). https://doi.org/10.1016/j.cpc.2017.11.001

  20. de Doncker, E., Yuasa, F., Olagbemi, O., Ishikawa, T.: Large scale automatic computations for Feynman diagrams with up to five loops. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12253, pp. 145–162. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58814-4_11

    Chapter  Google Scholar 

  21. Genz, A., Malik, A.: An adaptive algorithm for numerical integration over an n-dimensional rectangular region. J. Comput. Appl. Math. 6, 295–302 (1980)

    Article  Google Scholar 

  22. Hahn, T.: Cuba - a library for multidimensional numerical integration. Comput. Phys. Commun. 176, 712–713 (2007). https://doi.org/10.1016/j.cpc.2007.03.006

  23. Korobov, N.M.: The approximate computation of multiple integrals. Dokl. Akad. Nauk SSSR 124, 1207–1210 (1959). (Russian)

    MathSciNet  MATH  Google Scholar 

  24. Korobov, N.M.: Properties and calculation of optimal coefficients. Doklady Akademii Nauk SSSR 132, 1009–1012 (1960). (Russ.). Eng. trans. Soviet Math. Doklady 1, 696–700

    Google Scholar 

  25. L’ Equyer, P., Munger, D.: Algorithm 958: lattice builder: a general software tool for constructing rank-1 lattice rules. ACM Trans. Math. Softw. 42(2), 15:1–30 (2016)

    Google Scholar 

  26. Lee, R.N., Smirnov, A.V., Smirnov, V.A.: Master integrals for four-loop massless propagators up to weight twelve. Nucl. Phys. B 856, 95–110 (2012)

    Article  MathSciNet  Google Scholar 

  27. Malcolm, M., Simpson, R.: Local versus global strategies for adaptive quadrature. ACM Trans. Math. Softw. 1, 129–146 (1975)

    Article  MathSciNet  Google Scholar 

  28. MPI: http://www-unix.mcs.anl.gov/mpi/index.html

  29. Niederreiter, H.: Existence of good lattice points in the sense of Hlawka. Monatshefte für Mathematik 86, 203–219 (1978)

    Article  MathSciNet  Google Scholar 

  30. Nuyens, D., Cools, R.: Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comp. 75, 903–920 (2006)

    Article  MathSciNet  Google Scholar 

  31. Nuyens, D., Cools, R.: Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points. J. Complex. 22, 4–28 (2006)

    Article  MathSciNet  Google Scholar 

  32. Piessens, R., de Doncker, E., Überhuber, C.W., Kahaner, D.K.: QUADPACK, A Subroutine Package for Automatic Integration. Springer Series in Computational Mathematics, vol. 1. Springer, Heidelberg (1983). https://doi.org/10.1007/978-3-642-61786-7

  33. Rice, J.R.: A metalgorithm for adaptive quadrature. J. Assoc. Comput. Mach. 22, 61–82 (1975)

    Article  MathSciNet  Google Scholar 

  34. Ruijl, B., Ueda, T., Vermaseren, J.A.M.: Forcer, a FORM program for the parametric reduction of four-loop massless propagator diagrams. Comput. Phys. Commun. 253(107198) (2020)

    Google Scholar 

  35. Shanks, D.: Non-linear transformations of divergent and slowly convergent sequences. J. Math. and Phys. 34, 1–42 (1955)

    Article  MathSciNet  Google Scholar 

  36. Sidi, A.: Extension of a class of periodizing transformations for numerical integration. Math. Comp. 75(253), 327–343 (2005)

    Article  MathSciNet  Google Scholar 

  37. Sloan, I., Joe, S.: Lattice Methods for Multiple Integration. Oxford University Press, Oxford (1994)

    MATH  Google Scholar 

  38. Smirnov, A.V., Tentyukov, M.: Four-loop massless propagators: an numerical evaluation of all master integrals. Nucl. Phys. B 837, 40–49 (2010)

    Article  MathSciNet  Google Scholar 

  39. Sugihara, M.: Optimality of the double exponential formula - functional analysis approach. Numer. Math. 75(3), 379–395 (1997)

    Article  MathSciNet  Google Scholar 

  40. Takahasi, H., Mori, M.: Double exponential formulas for numerical integration. Publ. Res. Inst. Math. Sci. 9(3), 721–741 (1974)

    Article  MathSciNet  Google Scholar 

  41. Techpowerup. https://www.techpowerup.com/gpu-specs/quadro-gv100.c3066

  42. Wynn, P.: On a device for computing the \(e_m(s_n)\) transformation. Math. Tables Aids Comput. 10, 91–96 (1956)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the Grant-in-Aid for Scientific Research (JP17K05428 and JP20K03941) from JSPS KAKENHI, as well as the National Science Foundation Award Number 1126438 that funded the cluster used for the computations with ParInt in this paper. We also thank our colleagues, Dr. T. Ishikawa, Dr. H. Daisaka, Dr. N. Nakasato and Dr. J. Kapenga, for creating and maintaining computing environments supporting our Feynman integration work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elise de Doncker .

Editor information

Editors and Affiliations

A C and D functions

A C and D functions

The C and D functions for the diagrams of Fig. 1 are given in C code form below. We denote

$$\begin{aligned}&x_{i_1\ldots i_k} = \sum _{j = i_1}^{i_k} x_j \end{aligned}$$
(20)

We use \(x_a = x_{10}\) and \(x_b = x_{11}.\) Obvious notations also include \(xksq = x_k^2.\)

1.1 A.1 M61,  Fig. 1(a).

figure a

1.2 A.2 M62,  Fig. 1(b).

figure b

1.3 A.3 M63,  Fig. 1(c).

figure c

1.4 A.4 BH, Fig. 1(d).

figure d

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Doncker, E., Yuasa, F. (2021). Self-energy Feynman Diagrams with Four Loops and 11 Internal Lines. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12953. Springer, Cham. https://doi.org/10.1007/978-3-030-86976-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86976-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86975-5

  • Online ISBN: 978-3-030-86976-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics