Skip to main content

Blending Pruning Criteria for Convolutional Neural Networks

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2021 (ICANN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12894))

Included in the following conference series:

Abstract

The advancement of convolutional neural networks (CNNs) on various vision applications has attracted lots of attention. Yet the majority of CNNs are unable to satisfy the strict requirement for real-world deployment. To overcome this, the recent popular network pruning is an effective method to reduce the redundancy of the models. However, the ranking of filters according to their “importance” on different pruning criteria may be inconsistent. One filter could be important according to a certain criterion, while it is unnecessary according to another one, which indicates that each criterion is only a partial view of the comprehensive “importance”. From this motivation, we propose a novel framework to integrate the existing filter pruning criteria by exploring the criteria diversity. The proposed framework contains two stages: Criteria Clustering and Filters Importance Calibration. First, we condense the pruning criteria via layerwise clustering based on the rank of “importance” score. Second, within each cluster, we propose a calibration factor to adjust their significance for each selected blending candidates and search for the optimal blending criterion via Evolutionary Algorithm. Quantitative results on the CIFAR-100 and ImageNet benchmarks show that our framework outperforms the state-of-the-art baselines, regrading to the compact model performance after pruning.

W. He and Z. Huang—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beyer, H.G., Schwefel, H.P.: Evolution strategies-a comprehensive introduction. Natural Comput. 1(1), 3–52 (2002)

    Article  MathSciNet  Google Scholar 

  2. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45014-9_1

    Chapter  Google Scholar 

  3. Frankle, J., Carbin, M.: The lottery ticket hypothesis: Finding sparse, trainable neural networks. In: International Conference on Learning Representations (2019)

    Google Scholar 

  4. Guo, J., Ouyang, W., Xu, D.: Multi-dimensional pruning: A unified framework for model compression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1508–1517 (2020)

    Google Scholar 

  5. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. He, W., Wu, M., Liang, M., Lam, S.K.: Cap: context-aware pruning for semantic segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 960–969, January 2021

    Google Scholar 

  8. He, Y., Ding, Y., Liu, P., Zhu, L., Zhang, H., Yang, Y.: Learning filter pruning criteria for deep convolutional neural networks acceleration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  9. He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter pruning via geometric median for deep convolutional neural networks acceleration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4340–4349 (2019)

    Google Scholar 

  10. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1389–1397 (2017)

    Google Scholar 

  11. Hu, H., Peng, R., Tai, Y.W., Tang, C.K.: Network trimming: a data-driven neuron pruning approach towards efficient deep architectures. arXiv preprint arXiv:1607.03250 (2016)

  12. Huang, Z., Wang, N.: Data-driven sparse structure selection for deep neural networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 304–320 (2018)

    Google Scholar 

  13. Huang, Z., Liang, S., Liang, M., He, W., Yang, H.: Efficient attention network: Accelerate attention by searching where to plug. arXiv preprint arXiv:2011.14058 (2020)

  14. Huang, Z., Liang, S., Liang, M., Yang, H.: Dianet: dense-and-implicit attention network. arXiv preprint arXiv:1905.10671 (2019)

  15. Huang, Z., Wang, X., Luo, P.: Convolution-weight-distribution assumption: Rethinking the criteria of channel pruning. arXiv preprint arXiv:2004.11627 (2020)

  16. Junior, F.E.F., Yen, G.G.: Pruning deep neural networks architectures with evolution strategy. arXiv preprint arXiv:1912.11527 (2019)

  17. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, Citeseer (2009)

    Google Scholar 

  18. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710 (2016)

  19. Liang, S., Huang, Z., Liang, M., Yang, H.: Instance enhancement batch normalization: an adaptive regulator of batch noise. In: AAAI, pp. 4819–4827 (2020)

    Google Scholar 

  20. Liang, S., Khoo, Y., Yang, H.: Drop-activation: implicit parameter reduction and harmonious regularization. Commun. Appl. Math. Comput. 3(2), 293–311 (2021)

    Article  MathSciNet  Google Scholar 

  21. Liu, Z., et al.: Metapruning: meta learning for automatic neural network channel pruning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3296–3305 (2019)

    Google Scholar 

  22. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolutional networks through network slimming. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2736–2744 (2017)

    Google Scholar 

  23. Luo, J.H., Wu, J.: An entropy-based pruning method for cnn compression. arXiv preprint arXiv:1706.05791 (2017)

  24. Luo, J.H., Wu, J., Lin, W.: Thinet: A filter level pruning method for deep neural network compression. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5058–5066 (2017)

    Google Scholar 

  25. Molchanov, P., Mallya, A., Tyree, S., Frosio, I., Kautz, J.: Importance estimation for neural network pruning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11264–11272 (2019)

    Google Scholar 

  26. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440 (2016)

  27. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4780–4789 (2019)

    Google Scholar 

  28. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Tan, J., Le, Q.V., Kurakin, A.: Large-scale evolution of image classifiers. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 2902–2911. JMLR. org (2017)

    Google Scholar 

  29. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  30. C Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  31. Sedgwick, P.: Spearman’s rank correlation coefficient. Bmj 349, g7327 (2014)

    Google Scholar 

  32. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  33. Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. CRC Press, Boca Raton (2012)

    Google Scholar 

Download references

Acknowledgments

S. L. and H. Y. were partially supported by the NSF grant DMS-1945029 and the NVIDIA GPU grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haizhao Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, W., Huang, Z., Liang, M., Liang, S., Yang, H. (2021). Blending Pruning Criteria for Convolutional Neural Networks. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science(), vol 12894. Springer, Cham. https://doi.org/10.1007/978-3-030-86380-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86380-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86379-1

  • Online ISBN: 978-3-030-86380-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics