Skip to main content

Remodeling of the Bone Marrow Stromal Microenvironment During Pathogenic Infections

  • Chapter
  • First Online:
Bone Marrow Niche

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 434))

Abstract

The bone marrow (BM) is the primary hematopoietic organ and a hub in which organismal demands for blood cellular output are systematically monitored. BM tissues are additionally home to a plethora of mature immune cell types, providing functional environments for the activation of immune responses and acting as preferred anatomical reservoirs for cells involved in immunological memory. Stromal cells of the BM microenvironment crucially govern different aspects of organ function, by structuring tissue microanatomy and by directly providing essential regulatory cues to hematopoietic and immune components in distinct niches. Emerging evidence demonstrates that stromal networks are endowed with remarkable functional and structural plasticity. Stress-induced adaptations of stromal cells translate into demand-driven hematopoiesis. Furthermore, aberrations of stromal integrity arising from pathological conditions critically contribute to the dysregulation of BM function. Here, we summarize our current understanding of the alterations that pathogenic infections and ensuing inflammatory conditions elicit on the global topography of the BM microenvironment, the integrity of anatomical niches and cellular interactions, and ultimately, on the regulatory function of diverse stromal subsets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acar M et al (2015) Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526:126–130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Apperley JF et al (1989) The effect of cytomegalovirus on hemopoiesis: in vitro evidence for selective infection of marrow stromal cells. Exp Hematol 17:38–45

    CAS  PubMed  Google Scholar 

  • Avecilla ST et al (2003) Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10:64–71

    PubMed  Google Scholar 

  • Baccin C et al (2019) Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat Cell Biol 22:1–30

    Google Scholar 

  • Baldridge MT, King KY, Boles NC, Weksberg DC, Goodell MA (2010) Quiescent haematopoietic stem cells are activated by IFN. Nature 465:793–797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balzano M et al (2019) Nidogen-1 contributes to the interaction network involved in Pro-B cell retention in the peri- sinusoidal hematopoietic stem cell niche. Cell Rep 26:3257-3271.e8

    CAS  PubMed  Google Scholar 

  • Baryawno N et al. (2019) A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell:1–35. https://doi.org/10.1016/j.cell.2019.04.040

  • Beaupere C et al (2015) The HIV proteins Tat and Nef promote human bone marrow mesenchymal stem cell senescence and alter osteoblastic differentiation. Aging Cell 14:534–546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belyaev NN et al (2010) Induction of an IL7-R+c-Kithi myelolymphoid progenitor critically dependent on IFN-γ signaling during acute malaria. Nat Immunol:1–10. https://doi.org/10.1038/ni.1869

  • Belyaev NN, Biró J, Langhorne J, Potocnik AJ (2013) Extramedullary myelopoiesis in malaria depends on mobilization of myeloid-restricted progenitors by IFN-γ induced chemokines. PLoS Pathog 9:e1003406

    Google Scholar 

  • Bessis M (1958) [Erythroblastic island, functional unity of bone marrow]. Rev Hematol 13:8–11

    Google Scholar 

  • Boeckh M, Ljungman P (2009) How we treat cytomegalovirus in hematopoietic cell transplant recipients. Blood. https://doi.org/10.1182/blood

    Article  PubMed  PubMed Central  Google Scholar 

  • Boettcher S et al (2014) Endothelial cells translate pathogen signals into G-CSF-driven emergency granulopoiesis. Blood 124:1393–1403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bortnick A, Chernova I, Spencer SP, Allman D (2018) No strict requirement for eosinophils for bone marrow plasma cell survival. Eur J Immunol 48:815–821

    CAS  PubMed  Google Scholar 

  • Boxx GM, Cheng G (2016) The Roles of Type I Interferon in Bacterial Infection. Cell Host Microbe 19:760–769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown KE, Young NS (1996) Parvoviruses and bone marrow failure. Stem Cells 14:151–163

    CAS  PubMed  Google Scholar 

  • Bruns I et al (2014) Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med 20:1315–1320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burberry A et al (2014) Infection mobilizes hematopoietic stem cells through cooperative NOD-like receptorand toll-like receptor signaling. Cell Host Microbe 15:779–791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell DJ, Koch MA (2011) Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat Rev Immunol 11:119–130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao J et al (2015) Ablation of wntlessin endosteal niches impairs lymphopoiesis rather than HSCs maintenance. Eur J Immunol 45:2650–2660

    CAS  PubMed  Google Scholar 

  • Cariappa A et al (2005) Perisinusoidal B cells in the bone marrow participate in T-independent responses to blood-borne microbes. Immunity 23:397–407

    CAS  PubMed  Google Scholar 

  • Cariappa A, Chase C, Liu H, Russell P, Pillai S (2006) Naive recirculating B cells mature simultaneously in the spleen and bone marrow. Blood 109:2339–2345

    PubMed  Google Scholar 

  • Cavanagh LL et al (2005) Activation of bone marrow–resident memory T cells by circulating, antigen-bearing dendritic cells. Nat Immunol 6:1029–1037

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang H-D, Tokoyoda K, Radbruch A (2018) Immunological memories of the bone marrow. Immunol Rev 283:86–98

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chasis JA, Mohandas N (2008) Erythroblastic islands: niches for erythropoiesis. Blood 112:470–478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chavakis T, Mitroulis I, Hajishengallis G (2019) Hematopoietic progenitor cells as integrative hubs for adaptation to and fine-tuning of inflammation. Nat Immunol 20:1–10

    Google Scholar 

  • Chou DB et al (2012) Stromal-derived IL-6 alters the balance of myeloerythroid progenitors during Toxoplasma gondii infection. J Leukoc Biol 92:123–131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chow A et al (2013) CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med 19:429–436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chu VT et al (2011) Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat Immunol 12:151–159

    CAS  PubMed  Google Scholar 

  • Comazzetto S et al (2019) Restricted hematopoietic progenitors and erythropoiesis require SCF from leptin receptor+ niche cells in the bone marrow. Cell Stem Cell 24:477-486.e6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cordeiro Gomes A et al (2016) Hematopoietic stem cell niches produce lineage-instructive signals to control multipotent progenitor differentiation. Immunity 45:1219–1231

    Google Scholar 

  • Crane GM, Jeffery E, Morrison SJ (2017) Adult haematopoietic stem cell niches. Nat Rev Immunol 4:7

    Google Scholar 

  • Cui G et al (2014) Characterization of the IL-15 niche in primary and secondary lymphoid organs in vivo. Proc Natl Acad Sci 111:1915–1920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Das B et al (2013) CD271+ Bone marrow mesenchymal stem cells may provide a niche for dormant mycobacterium tuberculosis. Sci Transl Med 5:170ra13–170ra13

    Google Scholar 

  • Day RB, Bhattacharya D, Nagasawa T, Link DC (2015) Granulocyte colony-stimulating factor reprograms bone marrow stromal cells to actively suppress B lymphopoiesis in mice. Blood. https://doi.org/10.1182/blood-2015-02

    Article  PubMed  PubMed Central  Google Scholar 

  • de Bruin AM et al (2012) IFN induces monopoiesis and inhibits neutrophil development during inflammation. Blood 119:1543–1554

    PubMed  Google Scholar 

  • de Bruin AM, Voermans C, Nolte MA (2014) Impact of interferon-γ on hematopoiesis. Blood 124:2479–2486

    PubMed  Google Scholar 

  • Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495:231–235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481:457–462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta P et al (2015) Myocardial infarction activates CCR2(+) hematopoietic stem and progenitor cells. Cell Stem Cell 16:477–487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esplin BL et al (2011) Chronic exposure to a TLR ligand injures hematopoietic stem cells. J Immunol 186:5367–5375

    CAS  PubMed  Google Scholar 

  • Essers MAG et al (2009) IFNα activates dormant haematopoietic stem cells in vivo. Nature:1–6. https://doi.org/10.1038/nature07815

  • Feuerer M et al (2003) Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nat Med 9:1151–1157

    CAS  PubMed  Google Scholar 

  • Fistonich C et al (2018) Cell circuits between B cell progenitors and IL-7+ mesenchymal progenitor cells control B cell development. J Exp Med 215:2586–2599

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujisaki J et al (2011) In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474:216-219

    Google Scholar 

  • Gomariz Á et al (2018) Quantitative spatial analysis of haematopoiesis-regulating stromal cells in the bone marrow microenvironment by 3D microscopy. Nat Commun 9:407–415

    Google Scholar 

  • Gomariz Á, Isringhausen S, Helbling PM, Nombela Arrieta C (2019) Imaging and spatial analysis of hematopoietic stem cell niches. Annals New York Acad Sci 94:284–12

    Google Scholar 

  • Greenbaum A et al (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495:227–230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haberland K et al (2018) Eosinophils are not essential for maintenance of murine plasma cells in the bone marrow. Eur J Immunol 48:822–828

    CAS  PubMed  Google Scholar 

  • Helbling PM et al (2019) Global transcriptomic profiling of the bone marrow stromal microenvironment during postnatal development, aging, and inflammation. Cell Rep 29:3313-3330.e4

    CAS  PubMed  Google Scholar 

  • Hérault A et al. (2017) Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis. Nature:1–19 (2017). https://doi.org/10.1038/nature21693

  • Himburg HA et al (2018) Distinct bone marrow sources of pleiotrophin control hematopoietic stem cell maintenance and regeneration. Cell Stem Cell 23:370-381.e5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirata Y et al (2018) CD150high Bone Marrow Tregs Maintain Hematopoietic Stem Cell Quiescence and Immune Privilege via Adenosine. Cell Stem Cell 22:445-453.e5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirche C et al (2017) Systemic virus infections differentially modulate cell cycle state and functionality of long-term hematopoietic stem cells in vivo. Cell Rep 19:2345–2356

    CAS  PubMed  Google Scholar 

  • Isgrò A et al (2005) Immunodysregulation of HIV disease at bone marrow level 4:486–490

    Google Scholar 

  • Itkin T et al (2016) Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532:323–328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iwamura C, Bouladoux N, Belkaid Y, Sher A, Jankovic D (2017) Sensing of the microbiota by NOD1 in mesenchymal stromal cells regulates murine hematopoiesis. Blood 129:171–176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johns J, Borjesson D (2012) Downregulation of CXCL12 signaling and altered hematopoietic stem and progenitor cell trafficking in a murine model of acute Anaplasma phagocytophilum infection. Innate Immun 18:418–428

    CAS  PubMed  Google Scholar 

  • Johns JL, Christopher MM (2012) Extramedullary hematopoiesis: a new look at the underlying stem cell niche, theories of development, and occurrence in animals. Vet Pathol 49:508–523

    CAS  PubMed  Google Scholar 

  • Junt T et al (2007) Dynamic visualization of thrombopoiesis within bone marrow. Science 317:1767–1770

    CAS  PubMed  Google Scholar 

  • Junt T, Scandella E, Ludewig B (2008) Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence. Nat Rev Immunol 8:764–775

    CAS  PubMed  Google Scholar 

  • Kfoury Y, Scadden DT (2015) Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell 16:239–253

    CAS  PubMed  Google Scholar 

  • Khodadadi L, Cheng Q, Radbruch A, Hiepe F (2019) The maintenance of memory plasma cells. Front Immunol 10:64–17

    Google Scholar 

  • Kiel MJ, Iwashita T, Yilmaz ÖH, Morrison SJ (2005) Spatial differences in hematopoiesis but not in stem cells indicate a lack of regional patterning in definitive hematopoietic stem cells. Dev Biol 283:29–39

    CAS  PubMed  Google Scholar 

  • Kobayashi H et al (2015) Bacterial c-di-GMP affects hematopoietic Stem/progenitors and their niches through STING. Cell Rep 11:71–84

    CAS  PubMed  Google Scholar 

  • Kohara H et al (2007) Development of plasmacytoid dendritic cells in bone marrow stromal cell niches requires CXCL12-CXCR4 chemokine signaling. Blood 110:4153–4160

    CAS  PubMed  Google Scholar 

  • Kunisaki Y et al (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502:637–643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lassailly F, Foster K, Lopez-Onieva L, Currie E, Bonnet D (2013) Multimodal imaging reveals structural and functional heterogeneity in different bone marrow compartments: functional implications on hematopoietic stem cells. Blood 122:1730–1740

    CAS  PubMed  Google Scholar 

  • Lim S et al (2014) VEGFR2-mediated vascular dilation as a mechanism of VEGF-induced anemia and bone marrow cell mobilization. Cell Rep 9:569–580

    CAS  PubMed  Google Scholar 

  • Liu A et al (2015) Cutting edge: hematopoietic stem cell expansion and common lymphoid progenitor depletion require hematopoietic-derived, cell-autonomous TLR4 in a model of chronic endotoxin. J Immunol 195:2524–2528

    CAS  PubMed  Google Scholar 

  • MacNamara KC et al (2011) Infection-induced myelopoiesis during intracellular bacterial infection is critically dependent upon IFN- signaling. J Immunol 186:1032–1043

    CAS  PubMed  Google Scholar 

  • Manz MG, Boettcher S (2014) Emergency granulopoiesis. Nat Rev Immunol 14:302–314

    CAS  PubMed  Google Scholar 

  • Massberg S et al (2007) Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131:994–1008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matatall KA, Shen C-C, Challen GA, King KY (2014) Type II interferon promotes differentiation of myeloid-biased hematopoietic stem cells. Stem Cells 32:3023–3030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matatall KA et al (2016) Chronic Infection Depletes Hematopoietic Stem Cells through Stress-Induced Terminal Differentiation. Cell Rep 17:2584–2595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushita Y et al (2020) A Wnt-mediated transformation of the bone marrow stromal cell identity orchestrates skeletal regeneration. Nat Commun 11:1–17

    Google Scholar 

  • Mayer A et al (1997) Bone marrow failure by cytomegalovirus is associated with an in vivo deficiency in the expression of essential stromal hemopoietin genes. J Virol 71:4589–4598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Méndez-Ferrer S et al (2020) Bone marrow niches in haematological malignancies. Nat Rev Cancer 20:1–14

    Google Scholar 

  • Mercier FE, Ragu C, Scadden DT (2012) The bone marrow at the crossroads of blood and immunity. Nat Rev Immunol 12:49–60

    CAS  Google Scholar 

  • Mirandola P et al (2000) Infection of CD34(+) hematopoietic progenitor cells by human herpesvirus 7 (HHV-7). Blood 96:126–131

    CAS  PubMed  Google Scholar 

  • Mitroulis I et al (2018) Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity. Cell 172:147-155.e12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505:327–334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moses AV et al (1996) Human immunodeficiency virus infection of bone marrow endothelium reduces induction of stromal hematopoietic growth factors. Blood 87:919–925

    CAS  PubMed  Google Scholar 

  • Mueller SN, Germain RN (2009) Stromal cell contributions to the homeostasis and functionality of the immune system. Nat Rev Immunol 9:618–629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagai Y et al (2006) Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 24:801–812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Netea MG et al (2020) Defining trained immunity and its role in health and disease. Nat Rev Immunol 173:1–14

    Google Scholar 

  • Netea MG et al (2016) Trained immunity: A program of innate immune memory in health and disease. Science 352:aaf1098–aaf1098

    Google Scholar 

  • Nombela Arrieta C, Isringhausen S (2016) The role of the bone marrow stromal compartment in the hematopoietic response to microbial infections. Front Immunol 7:689

    PubMed  Google Scholar 

  • Nombela-Arrieta C, Manz MG (2017) Quantification and three-dimensional microanatomical organization of the bone marrow. Blood Adv

    Google Scholar 

  • O’Sullivan TE, Sun JC, Lanier LL (2015) Natural killer cell memory. Immunity 43:634–645

    PubMed  PubMed Central  Google Scholar 

  • Omatsu Y et al (2010) The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33:387–399

    CAS  PubMed  Google Scholar 

  • Omatsu Y, Seike M, Sugiyama T, Kume T, Nagasawa T (2014) Foxc1 is a critical regulator of haematopoietic stem/ progenitor cell niche formation. Nature:1–16. https://doi.org/10.1038/nature13071

  • Park S-Y et al (2013) Focal adhesion kinase regulates the localization and retention of pro-B cells in bone marrow microenvironments. J Immunol 190:1094–1102

    CAS  PubMed  Google Scholar 

  • Pascutti MF, Erkelens MN, Nolte MA (2016) Impact of viral infections on hematopoiesis: from beneficial to detrimental effects on bone marrow output. Front Immunol 7:364

    PubMed  PubMed Central  Google Scholar 

  • Pereira JP, An J, Xu Y, Huang Y, Cyster JG (2009) Cannabinoid receptor 2 mediates the retention of immature B cells in bone marrow sinusoids. Nat Immunol 10:403–411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pierini A et al (2017) Foxp3+ regulatory T cells maintain the bone marrow microenvironment for B cell lymphopoiesis. Nat Commun 8:15068–15113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pietras EM (2017) Inflammation: a key regulator of hematopoietic stem cell fate in health and disease. Blood 130:1693–1698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pietras EM et al (2016) Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol 18:607–618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinho S, Frenette PS (2019) Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol 20:1–18

    Google Scholar 

  • Pioli PD, Casero D, Montecino-Rodriguez E, Morrison SL, Dorshkind K (2019) Plasma cells are obligate effectors of enhanced myelopoiesis in aging bone marrow. Immunity:1–29. https://doi.org/10.1016/j.immuni.2019.06.006

  • Prendergast ÁM et al (2017) IFNα-mediated remodeling of endothelial cells in the bone marrow niche. Haematologica 102:445–453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quintin J, Cheng S-C, van der Meer JWM, Netea MG (2014) Innate immune memory: towards a better understanding of host defense mechanisms. Curr Opin Immunol 29:1–7

    CAS  PubMed  Google Scholar 

  • Ramos P et al (2019) Macrophages support pathological erythropoiesis in polycythemia vera and β thalassemia. Nat Med:1–11. https://doi.org/10.1038/nm.3126

  • Rosenfeld SJ, Young NS (1991) Viruses and bone marrow failure. Blood Rev 5:71–77

    CAS  PubMed  Google Scholar 

  • Sapoznikov A et al (2008) Perivascular clusters of dendritic cells provide critical survival signals to B cells in bone marrow niches. Nat Immunol 9:388–395

    CAS  PubMed  Google Scholar 

  • Scadden DT, Zon LI, Groopman JE (1989) Pathophysiology and management of HIV-associated hematologic disorders. Blood 74:1455–1463

    CAS  PubMed  Google Scholar 

  • Scadden DT et al (1990) Human immunodeficiency virus infection of human bone marrow stromal fibroblasts. Blood 76:317–322

    CAS  PubMed  Google Scholar 

  • Schmid MA, Takizawa H, Baumjohann DR, Saito Y, Manz MG (2011) Bone marrow dendritic cell progenitors sense pathogens via Toll-like receptors and subsequently migrate to inflamed lymph nodes. Blood 118:4829–4840

    CAS  PubMed  Google Scholar 

  • Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25

    CAS  PubMed  Google Scholar 

  • Schultze JL, Mass E, Schlitzer A (2019) Emerging Principles in Myelopoiesis at Homeostasis and during Infection and Inflammation. Immunity 50:288–301

    CAS  PubMed  Google Scholar 

  • Schürch CM, Riether C, Ochsenbein AF (2014) Cytotoxic CD8(+) T cells stimulate hematopoietic progenitors by promoting cytokine release from bone marrow mesenchymal stromal cells. Cell Stem Cell. https://doi.org/10.1016/j.stem.2014.01.002

    Article  PubMed  Google Scholar 

  • Shi C et al (2011) Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands. Immunity 34:590–601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Si Y, Tsou C-L, Croft K, Charo IF (2010) CCR2 mediates hematopoietic stem and progenitor cell trafficking to sites of inflammation in mice. J Clin Investig 120:1192–1203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silverman PH, Schooley JC, Mahlmann LJ (1987) Murine malaria decreases hemopoietic stem cells. Blood 69:408–413

    CAS  PubMed  Google Scholar 

  • Simmons P, Kaushansky K, Torok-Storb B (1990) Mechanisms of cytomegalovirus-mediated myelosuppression: perturbation of stromal cell function versus direct infection of myeloid cells. Proc Natl Acad Sci USA 87:1386–1390

    Google Scholar 

  • Sivaraj KK, Adams RH (2016) Blood vessel formation and function in bone. Development 143:2706–2715

    CAS  PubMed  Google Scholar 

  • Smith JNP, Kanwar VS, MacNamara KC (2016) Hematopoietic stem cell regulation by Type I and II interferons in the pathogenesis of acquired aplastic anemia. Front Immunol 7:569–613

    Google Scholar 

  • Smith JNP et al (2018) Type I IFNs drive hematopoietic stem and progenitor cell collapse via impaired proliferation and increased RIPK1-dependent cell death during shock-like ehrlichial infection. PLoS Pathog 14:e1007234

    Google Scholar 

  • Stegner D et al (2017).Thrombopoiesis is spatially regulated by the bone marrow vasculature. Nat Commun:1–11. https://doi.org/10.1038/s41467-017-00201-7

  • Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25:977–988

    CAS  PubMed  Google Scholar 

  • Takizawa H, Regoes RR, Boddupalli CS, Bonhoeffer S, Manz MG (2011) Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation. J Exp Med 208:273–284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takizawa H, Boettcher S, Manz MG (2012) Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood 119:2991–3002

    CAS  PubMed  Google Scholar 

  • Takizawa H et al (2017) Pathogen-induced TLR4-TRIF innate immune signaling in hematopoietic stem cells promotes proliferation but reduces competitive fitness. Cell Stem Cell 21:225-240.e5

    CAS  PubMed  Google Scholar 

  • Terashima A et al (2016) Sepsis-induced osteoblast ablation causes immunodeficiency. Immunity 44:1434–1443

    CAS  PubMed  Google Scholar 

  • Teuwen LA, Geldhof V, Pasut A, Carmeliet P (2020) COVID-19: the vasculature unleashed. Nat Rev Immunol:1–3. https://doi.org/10.1038/s41577-020-0343-0

  • Tikhonova AN et al (2019) The bone marrow microenvironment at single-cell resolution. Nature 505:1–28

    Google Scholar 

  • Tokoyoda K et al (2009) Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. Immunity 30:721–730

    CAS  PubMed  Google Scholar 

  • Tokoyoda K, Hauser AE, Nakayama T, Radbruch A (2010) Organization of immunological memory by bone marrow stroma. Nat Rev Immunol 10:193–200

    CAS  PubMed  Google Scholar 

  • Tornack J et al (2017) Human and mouse hematopoietic stem cells are a depot for dormant mycobacterium tuberculosis. PLoS ONE 12:e0169119-e169218

    PubMed  PubMed Central  Google Scholar 

  • Ueda Y (2005) Inflammation and the reciprocal production of granulocytes and lymphocytes in bone marrow. J Exp Med 201:1771–1780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vainieri ML et al (2016) Systematic tracking of altered haematopoiesis during sporozoite-mediated malaria development reveals multiple response points. Open Biol 6:160038–160113

    PubMed  PubMed Central  Google Scholar 

  • Vandoorne K et al (2018) Imaging the vascular bone marrow niche during inflammatory stress. Circul Res CIRCRESAHA 118:313302. doi:https://doi.org/10.1161/CIRCRESAHA.118.313302

  • Venugopal K, Hentzschel F, Nas GVX, Marti M (2020) Plasmodium asexual growth and sexual development in the haematopoietic niche of the host. Nat Rev Microbiol 210:1–13

    Google Scholar 

  • Walter D et al (2015) Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature 520:549–552

    PubMed  Google Scholar 

  • Wei Q, Frenette PS (2018) Niches for hematopoietic stem cells and their progeny. Immunity 48:632–648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Welner RS et al (2008) Lymphoid precursors are directed to produce dendritic cells as a result of TLR9 ligation during herpes infection. Blood 112:3753–3761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winter O et al (2010) Megakaryocytes constitute a functional component of a plasma cell niche in the bone marrow. Blood 116:1867–1875

    CAS  PubMed  Google Scholar 

  • Wolock SL et al (2019) Mapping distinct bone marrow niche populations and their differentiation paths. Cell Rep 28:302-311.e5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X et al (2018) Intrinsic immunity shapes viral resistance of stem cells. Cell:1–42. https://doi.org/10.1016/j.cell.2017.11.018

  • Xu C et al (2018) Stem cell factor is selectively secreted by arterial endothelial cells in bone marrow. Nat Commun:1–13 (2018).https://doi.org/10.1038/s41467-018-04726-3

  • Yamashita M, Passegué E (2019) TNF-α coordinates hematopoietic stem cell survival and myeloid regeneration. Cell Stem Cell 25:357-372.e7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama T, Etoh T, Kitagawa H, Tsukahara S, Kannan Y (2003) Migration of erythroblastic islands toward the sinusoid as erythroid maturation proceeds in rat bone marrow. J Vet Med Sci 65:449–452

    PubMed  Google Scholar 

  • Yu VWC et al (2015) Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow. J Exp Med 212:759–774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaretsky AG, Engiles JB, Hunter CA (2013) Infection-induced changes in hematopoiesis. J Immunol 192:27–33

    Google Scholar 

  • Zaretsky AG et al (2017) T regulatory cells support plasma cell populations in the bone marrow. Cell Rep 18:1906–1916

    PubMed Central  Google Scholar 

  • Zehentmeier S et al (2014) Static and dynamic components synergize to form a stable survival niche for bone marrow plasma cells. Eur J Immunol 44:2306–2317

    CAS  PubMed  Google Scholar 

  • Zhang H et al (2016) Sepsis induces hematopoietic stem cell exhaustion and myelosuppression through distinct contributions of TRIF and MYD88. Stem Cell Reports 6:940–956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J et al (2019) Bone marrow dendritic cells regulate hematopoietic stem/progenitor cell trafficking. J Clin Invest 129:2920–2931

    PubMed  PubMed Central  Google Scholar 

  • Zhao JL et al (2014) Conversion of danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of stress-induced hematopoiesis. Cell Stem Cell 14:445–459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao M et al. (2014) Megakaryocytes maintain homeostatic quiescenceand promote post-injury regeneration of hematopoietic stem cells. Nat Med 1–8. https://doi.org/10.1038/nm.3706

  • Zhu J et al (2007) Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood 109:3706–3712

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Nombela Arrieta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mun, Y., Fazio, S., Arrieta, C.N. (2021). Remodeling of the Bone Marrow Stromal Microenvironment During Pathogenic Infections. In: Nagasawa, T. (eds) Bone Marrow Niche. Current Topics in Microbiology and Immunology, vol 434. Springer, Cham. https://doi.org/10.1007/978-3-030-86016-5_3

Download citation

Publish with us

Policies and ethics