Skip to main content

Automatic Synthesis of Boolean Networks from Biological Knowledge and Data

  • Conference paper
  • First Online:
Optimization and Learning (OLA 2021)

Abstract

Boolean Networks (BNs) are a simple formalism used to study complex biological systems when the prediction of exact reaction times is not of interest. They play a key role to understand the dynamics of the studied systems and to predict their disruption in case of complex human diseases. BNs are generally built from experimental data and knowledge from the literature, either manually or with the aid of programs. The automatic synthesis of BNs is still a challenge for which several approaches have been proposed. In this paper, we propose ASKeD-BN, a new approach based on Answer-Set Programming to synthesise BNs constrained in their structure and dynamics. By applying our method on several well-known biological systems, we provide empirical evidence that our approach can construct BNs in line with the provided constraints. We compare our approach with three existing methods (REVEAL, Best-Fit and caspo-TS) and show that our approach synthesises a small number of BNs which are covering a good proportion of the dynamical constraints, and that the variance of this coverage is low.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    raf, randomnet_n7k3, xiao_wnt5a, arellano_rootstem, davidich_yeast and faure_cellcycle.

  2. 2.

    Systems Biology Markup Language.

References

  1. Albert, R., Thakar, J.: Boolean modeling: a logic-based dynamic approach for understanding signaling and regulatory networks and for making useful predictions. Wiley Interdisc. Rev. Syst. Biol. Med. 6(5), 353–369 (2014). https://doi.org/10.1002/wsbm.1273

    Article  Google Scholar 

  2. Biane, C., Delaplace, F., Melliti, T.: Abductive network action inference for targeted therapy discovery. Electron. Notes Theoret. Comput. Sci. 335, 3–25 (2018). https://doi.org/10.1016/j.entcs.2018.03.006

    Article  Google Scholar 

  3. Bornholdt, S.: Less is more in modeling large genetic networks. Science 310(5747), 449–451 (2005). https://doi.org/10.1126/science.1119959

    Article  Google Scholar 

  4. Chatain, T., Haar, S., Kolčák, J., Paulevé, L.: Most permissive semantics of Boolean networks. Research Report (2020). https://hal.archives-ouvertes.fr/hal-01864693

  5. Chevalier, S., Noël, V., Calzone, L., Zinovyev, A., Paulevé, L.: Synthesis and simulation of ensembles of Boolean networks for cell fate decision. In: Abate, A., Petrov, T., Wolf, V. (eds.) CMSB 2020. LNCS, vol. 12314, pp. 193–209. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60327-4_11

    Chapter  Google Scholar 

  6. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Morgan & Claypool Publishers, Williston (2012). ISBN 978-1-60845-971–1

    Book  Google Scholar 

  7. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969). https://doi.org/10.1016/0022-5193(69)90015-0

    Article  MathSciNet  Google Scholar 

  8. Klarner, H., Streck, A., Siebert, H.: PyBoolNet: a python package for the generation, analysis and visualization of Boolean networks. Bioinformatics (2016). https://doi.org/10.1093/bioinformatics/btw682

    Article  Google Scholar 

  9. Lähdesmäki, H., Shmulevich, I., Yli-Harja, O.: On learning gene regulatory networks under the Boolean network model. Mach. Learn. 52(1), 147–167 (2003). https://doi.org/10.1023/A:1023905711304

    Article  MATH  Google Scholar 

  10. Lazebnik, Y.: Can a biologist fix a radio?—Or, what i learned while studying apoptosis. Cancer Cell 2(3), 179–182 (2002). https://doi.org/10.1016/S1535-6108(02)00133-2

    Article  MathSciNet  Google Scholar 

  11. Le Novère, N.: Quantitative and logic modelling of molecular and gene networks. Nat. Rev. Genet. 16(3), 146–158 (2015). https://doi.org/10.1038/nrg3885

    Article  Google Scholar 

  12. Liang, S., Fuhrman, S., Somogyi, R.: REVEAL, a general reverse engineering algorithm for inference of genetic network architectures. In: Pacific Symposium on Biocomputing, pp. 18–29 (1998). ISSN 2335–6928

    Google Scholar 

  13. Locke, J.C.W., et al.: Experimental validation of a predicted feedback loop in the multi-oscillator clock of arabidopsis thaliana. Mol. Syst. Biol. 2(1), 59 (2006). https://doi.org/10.1038/msb4100102

    Article  Google Scholar 

  14. Malik-Sheriff, R.S., et al.: BioModels—15 years of sharing computational models in life science. Nucleic Acids Res. 48(D1), D407–D415 (2020). https://doi.org/10.1093/nar/gkz1055

    Article  Google Scholar 

  15. Müssel, C., Hopfensitz, M., Kestler, H.A.: BoolNet—an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics 26(10), 1378–1380 (2010). https://doi.org/10.1093/bioinformatics/btq124

    Article  Google Scholar 

  16. Ostrowski, M., Paulevé, L., Schaub, T., Siegel, A., Guziolowski, C.: Boolean network identification from perturbation time series data combining dynamics abstraction and logic programming. Biosystems 149, 139–153 (2016). https://doi.org/10.1016/j.biosystems.2016.07.009

    Article  Google Scholar 

  17. Schwab, J.D., Kühlwein, S.D., Ikonomi, N., Kühl, M., Kestler, H.A.: Concepts in Boolean network modeling: what do they all mean? Comput. Struct. Biotechnol. J. 18, 571–582 (2020). https://doi.org/10.1016/j.csbj.2020.03.001

    Article  Google Scholar 

  18. Spellman, P.T., et al.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9(12), 3273–3297 (1998). https://doi.org/10.1091/mbc.9.12.3273

    Article  Google Scholar 

Download references

Acknowledgements

We thank Julie Lao and Hans-Jörg Schurr for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athénaïs Vaginay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vaginay, A., Boukhobza, T., Smaïl-Tabbone, M. (2021). Automatic Synthesis of Boolean Networks from Biological Knowledge and Data. In: Dorronsoro, B., Amodeo, L., Pavone, M., Ruiz, P. (eds) Optimization and Learning. OLA 2021. Communications in Computer and Information Science, vol 1443. Springer, Cham. https://doi.org/10.1007/978-3-030-85672-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85672-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85671-7

  • Online ISBN: 978-3-030-85672-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics