Skip to main content

Fungal Amylases and Their Industrial Applications

  • Chapter
  • First Online:
Industrially Important Fungi for Sustainable Development

Abstract

Discovering new industrial applications of microorganisms is diverse as they come from a variety of environmental niches. The majority of existing biotechnological applications are of microbial origin and enzymes are the most important among them. Microbial enzymes surpass those from animals and plant sources due to their ease of production and genetic manipulation, diverse catalytic activities, and many more. The role of enzymes in many processes has been known for a very long time in which the enzymes from microorganisms are used particularly for baking, brewing, alcohol production, cheese making, and many others. Starch represents one of the most pervasive and important renewable biological resources that form a major source of the food chain to a large population. Starch hydrolysis forms the basis of many industrial processes, and acid hydrolysis was significant during the earlier days. However, this was almost completely replaced by enzymatic hydrolysis; nowadays, since the availability and abundance of starch hydrolyzing microorganisms, corrosion-free reaction, and specificity of the reaction. One of the major applications of these enzymes is in the food industry and starch hydrolysis yields a diverse range of products such as glucose, maltose and fructose syrups, cyclodextrins, fat mimetics substances, and so on. They also find applications as brewing and baking agents. Enzymatic liquefaction and saccharification of starch require higher temperatures, which demand novel thermostable amylases. In this chapter, we discuss various aspects of amylase enzymes, their sources, application in the food, textile, paper, biofuel/bio-ethanol, detergent, and soap industries with challenges and prospects associated with amylase and associated industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules 4(1):117–139

    Article  PubMed  PubMed Central  Google Scholar 

  • Aishwarya S, Khan K, Patil AG, Satapathy P, Devi AT, Avinash MG et al (2020) Nutraceutical attributes of Tamarindus indica L. - devils’ tree with sour date. In: Choudhary MI, Yousuf S (eds) Science of spices and culinary herbs, vol 3. Bentham Science Publishers, Sharjah, pp 33–65

    Google Scholar 

  • Ashwini P, Sumana MN, Shilpa P, Mamatha P, Manasa P, Dhananjaya BL et al (2015) A review on Helicobacter pylori: its biology, complications and management. Int J Pharm Pharm Sci 7:14–20

    CAS  Google Scholar 

  • Ashwini P, Baker S, Prasad MN, Devi AT, Satish S, Zameer F et al (2019) Phytogenic synthesis of silver nanobactericides for anti-biofilm activity against human pathogen H. pylori. SN Appl Sci 1(4):1–7

    CAS  Google Scholar 

  • Balakrishnan D, Kumar SS, Sugathan S (2019) Amylases for food applications-updated information. In: Green bio-processes. Springer, Singapore, pp 199–227

    Chapter  Google Scholar 

  • Bamforth CW (2000) Beer: ancient yet modern biotechnology. Chem Educator 5(3):102–112

    Article  CAS  Google Scholar 

  • Beulah KC, Aishwarya W, Meghashri H, Prasad N et al (2015) Phyto-antiquorumones: an herbal approach for blocking bacterial trafficking and pathogenesis. Int J Pharm Pharm Sci 7(1):29–34

    CAS  Google Scholar 

  • Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485(7397):185–194

    Article  CAS  PubMed  Google Scholar 

  • Cavicchioli R (2011) Archaea-timeline of the third domain. Nat Rev Microbiol 9(1):51–61

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Chen X, Dai J, Yan L, Lu L, Chen J, Xie G (2015) Cloning, enhanced expression and characterization of an α-amylase gene from a wild strain in B. subtilis WB800. Int J Biol Macromol 80:200–207

    Article  CAS  PubMed  Google Scholar 

  • Ciloci A, Bivol C, Stratan M, Reva V, Clapco S, Tiurin S, Labliuc S (2012) Production and purification of α-amylase from Aspergillus niger 33-19 CNMN FD 02a mutant form. Analele Univ din Oradea Fasc Biol 19(1):74–79

    Google Scholar 

  • Coronado MJ, Vargas C, Hofemeister J, Ventosa A, Nieto JJ (2000) Production and biochemical characterization of an α-amylase from the moderate halophile Halomonas meridiana. FEMS Microbiol Lett 183(1):67–71

    CAS  PubMed  Google Scholar 

  • Deng A, Wu J, Zhang Y, Zhang G, Wen T (2010) Purification and characterization of a surfactant-stable high-alkaline protease from Bacillus sp. B001. Bioresour Technol 101(18):7100–7106

    Article  CAS  Google Scholar 

  • Djekrif-Dakhmouche S, Gheribi-Aoulmi Z, Meraihi Z, Bennamoun L (2006) Application of a statistical design to the optimization of culture medium for α-amylase production by Aspergillus niger ATCC 16404 grown on orange waste powder. J Food Eng 73(2):190–197

    Article  Google Scholar 

  • Far BE, Ahmadi Y, Khosroshahi AY, Dilmaghani A (2020) Microbial alpha-amylase production: progress, challenges and perspectives. Adv Pharm Bull 10(3):350

    Article  CAS  Google Scholar 

  • Feitkenhauer H (2003) Anaerobic digestion of desizing wastewater: influence of pretreatment and anionic surfactant on degradation and intermediate accumulation. Enzyme Microb Technol 33(2–3):250–258

    Article  CAS  Google Scholar 

  • Fiedurek J, Gromada A (2000) Production of catalase and glucose oxidase by Aspergillus niger using unconventional oxygenation of culture. J Appl Microbiol 89:85–89

    Article  CAS  PubMed  Google Scholar 

  • Gopal S, Srinivas V, Zameer F, Kreft J (2009) Prediction of proteins putatively involved in the thiol: disulfide redox metabolism of a bacterium (Listeria): the CXXC motif as query sequence. In Silico Biol 9(56):407–414

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003) Microbial α-amylases: a biotechnological perspective. Process Biochem 38(11):1599–1616

    Article  CAS  Google Scholar 

  • Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int 1:329121

    Google Scholar 

  • Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89(1):17–34

    Article  CAS  PubMed  Google Scholar 

  • Hii SL, Tan JS, Ling TC, Ariff AB (2012) Pullulanase: role in starch hydrolysis and potential industrial applications. Enzyme Res 2012:921362

    Article  PubMed  PubMed Central  Google Scholar 

  • Hmidet N, Ali NE, Haddar A, Kanoun S, Alya SK, Nasri M (2009) Alkaline proteases and thermostable α-amylase co-produced by Bacillus licheniformis NH1: characterization and potential application as detergent additive. Biochem Eng J 47(1–3):71–79

    Article  CAS  Google Scholar 

  • Horvathova V, Janecek S, Sturdik E (2001) Amylolytic enzymes: molecular aspects of their properties. Gen Physiol Biophys 20(1):7–32

    CAS  PubMed  Google Scholar 

  • Hussain I, Siddique F, Mahmood MS, Ahmed SI (2013) A review of the microbiological aspect of α-amylase production. Int J Agric Biol 15(5):1029–1034

    CAS  Google Scholar 

  • Jasti N, Khanal SK, Pometto AL III, van Leeuwen J (2008) Converting corn wet-milling effluent into high-value fungal biomass in a biofilm reactor. Biotechnol Bioeng 101(6):1223–1233

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Seo DH, Holden JF, Park CS (2014) Maltose-forming α-amylase from the hyperthermophilic archaeon Pyrococcus sp. ST04. Appl Microbiol Biotechnol 98(5):2121–2131

    Article  CAS  PubMed  Google Scholar 

  • Kathiresan K, Manivannan S (2006) Amylase production by Penicillium fellutanum isolated from mangrove rhizosphere soil. Afr J Biotechnol 5(10):829–832

    CAS  Google Scholar 

  • Khan K, Aishwarya S, Satapathy P, Veena SM, Melappa G, Zameer F et al (2020) Exploration of dill seeds (Anethum graveolens): an ayurpharmacomic approach. In: Science of spices and culinary herbs-latest laboratory, pre-clinical, and clinical studies, vol 2. Bentham Books, Sharjah, pp 116–152

    Chapter  Google Scholar 

  • Konsoula Z, Liakopoulou-Kyriakides M (2007) Co-production of α-amylase and β-galactosidase by Bacillus subtilis in complex organic substrates. Bioresour Technol 98(1):150–157

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Satyanarayana T (2009) Microbial glucoamylases: characteristics and applications. Crit Rev Biotechnol 29(3):225–255

    Article  CAS  PubMed  Google Scholar 

  • Kunamneni A, Permaul K, Singh S (2005) Amylase production in solid-state fermentation by the thermophilic fungus Thermomyces lanuginosus. J Biosci Bioeng 100(2):168–171

    Article  CAS  PubMed  Google Scholar 

  • Kunnel SG, Subramanya S, Satapathy P, Sahoo I, Zameer F (2019) Acrylamide induced toxicity and the propensity of phytochemicals in amelioration: a review. Cent Ner Syst Agents Med Chem 19(2):100–113

    Article  CAS  Google Scholar 

  • Li S, Yang X, Yang S, Zhu M, Wang X (2012) Technology prospecting on enzymes: application, marketing and engineering. Comp Struct Biotechnol J 2(3):e201209017

    Article  Google Scholar 

  • Lim SJ, Oslan SN, Oslan SN (2020) Purification and characterization of thermostable α-amylases from microbial sources. BioResource 15(1):2005–2029

    Article  Google Scholar 

  • Lonsane BK, Ramesh MV (1990) Production of bacterial thermostable α-amylase by solid-state fermentation: a potential tool for achieving economy in enzyme production and starch hydrolysis, Adv Appl Microbiol, vol 35. Academic, New York, pp 1–56

    Google Scholar 

  • Madhusudan M, Zameer F, Naidu A, Dhananjaya BL, Hegdekatte R (2016) Evaluating the inhibitory potential of Withania somnifera on platelet aggregation and inflammation enzymes: an in vitro and in silico study. Pharm Biol 54:1936–1941

    Article  CAS  Google Scholar 

  • Manjunatha HP, Singh H, Chauhan JB, Zameer F, Garampalli RH (2013) Induction of resistance against sorghum downy mildew by seed treatment with Duranta repens extracts. IOSR J Agric Vet Sci 3:37–44

    Article  Google Scholar 

  • Mathew T, Sree RA, Aishwarya S, Kounaina K, Patil AG, Satapathy P et al (2020) Graphene-based functional nanomaterials for biomedical and bioanalysis applications. Flat Chem 23:100184

    Article  CAS  Google Scholar 

  • Mehta D, Satyanarayana T (2016) Bacterial and archaeal α-amylases: diversity and amelioration of the desirable characteristics for industrial applications. Front Microbiol 7:1129

    Article  PubMed  PubMed Central  Google Scholar 

  • Mobini-Dehkordi M, Javan FA (2012) Application of alpha-amylase in biotechnology. J Biol Todays World 1:39–50

    Google Scholar 

  • More VS, Ebinesar A, Prakruthi A, Praveen P, Fasim A, Archana R et al (2021) Isolation and purification of microbial exopolysaccharides and their industrial application, Microbial polymer. Springer, Singapore, pp 69–86

    Google Scholar 

  • Moshfegh M, Shahverdi AR, Zarrini G, Faramarzi MA (2013) Biochemical characterization of an extracellular polyextremophilic α-amylase from the halophilic archaeon Halorubrum xinjiangense. Extremophiles 17(4):677–687

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee AK, Borah M, Rai SK (2009) To study the influence of different components of fermentable substrates on induction of extracellular α-amylase synthesis by Bacillus subtilis DM-03 in solid-state fermentation and exploration of feasibility for inclusion of α-amylase in laundry detergent formulations. Biochem Eng J 43(2):149–156

    Article  CAS  Google Scholar 

  • Murthy PS, Madhava Naidu M, Srinivas P (2009) Production of α-amylase under solid-state fermentation utilizing coffee waste. J Chem Technol Biotechnol 84(8):1246–1249

    Article  CAS  Google Scholar 

  • Nigam PS (2013) Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 3(3):597–611

    Article  PubMed  PubMed Central  Google Scholar 

  • Onodera M, Yatsunami R, Tsukimura W, Fukui T, Nakasone K, Takashina T et al (2013) Gene analysis, expression, and characterization of an intracellular α-amylase from the extremely halophilic archaeon Haloarcula japonica. Biosci Biotechnol Biochem 77(2):281–288

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Advances in microbial amylases. Biotech Appl Biochem 31(2):135–152

    Article  CAS  Google Scholar 

  • Pankaj S, Aishwarya S, Rashmi Shetty M, Akshaya Simha N, Dhanapal G, Aishwarya Shree R et al (2020) Phyto-nano-antimicrobials: synthesis, characterization, discovery, and advances, Chapter 7. In: Frontiers in anti-infective drug discovery, vol 8. Bentham Science International Publishers, Sharjah, pp 196–231

    Chapter  Google Scholar 

  • Parameswaran B, Piyush P, Raghavendra G, Nampoothiri KM, Duggal A, Dey K (2013) Industrial enzymes - present status and future perspectives for India. J Sci Ind Res 72:271–286

    Google Scholar 

  • Patil AG, Kounaina K, Aishwarya S, Harshitha N, Satapathy P, Hudeda SP et al (2021) Myco-nanotechnology for sustainable agriculture: challenges and opportunities. In: Recent trends in mycological research. Springer, Cham, pp 457–479

    Chapter  Google Scholar 

  • Pradeep NV, Anupama AK, Pooja J (2012) Categorizing phenomenal features of α-amylase (Bacillus species) using bioinformatic tools. Adv Lif Sci Technol 4:27–31

    Google Scholar 

  • Prakash O, Jaiswal N (2010) α-Amylase: an ideal representative of thermostable enzymes. Appl Biochem Biotechnol 160(8):2401–2414

    Article  PubMed  Google Scholar 

  • Prasad MP, Sethi R, Anand M (2014) Evaluation of-amylase enzyme from Bacillus sp. isolated from various soil samples. Int J Curr Microbiol Appl Sci 3(10):783–789

    Google Scholar 

  • Prasad A, Devi AT, Prasad MN, Zameer F, Shruthi G, Shivamallu C (2019) Phyto anti-biofilm elicitors as potential inhibitors of Helicobacter pylori. 3 Biotech 9(2):53

    Article  PubMed  PubMed Central  Google Scholar 

  • Ray RR, Nanda G (1996) Microbial β-amylases: biosynthesis, characteristics, and industrial applications. Crit Rev Microbiol 22(3):181–199

    Article  CAS  PubMed  Google Scholar 

  • Regulapati R, Malav PN, Gummadi SN (2007) Production of thermostable α-amylases by solid-state fermentation - a review. Am J Food Technol 2(1):1–1

    Article  CAS  Google Scholar 

  • Robinson T, Singh D, Nigam P (2001) Solid-state fermentation: a promising microbial technology for secondary metabolite production. Appl Microbiol Biotechnol 55(3):284–289

    Article  CAS  PubMed  Google Scholar 

  • Santos RD, Muruci LN, Santos LO, Antoniassi R, da Silva JP, Damaso MC (2014) Characterization of different oil soapstocks and their application in the lipase production by Aspergillus niger under solid-state fermentation. J Food Nutr Res 2(9):561–566

    Article  Google Scholar 

  • Saranraj P, Naidu MA (2014) Microbial pectinases: a review. Glob J Trad Med Syst 3(1):1–9

    Google Scholar 

  • Satapathy P, Khan K, Devi AT, Patil AG, Govindaraju AM et al (2019) Synthetic gutomics: deciphering the microbial code for futuristic diagnosis and personalized medicine. Methods Microbiol 46:197–225

    Article  CAS  Google Scholar 

  • Satapathy P, Prakash JK, Gowda VC, More SS, Chandramohan V, Zameer F (2020) Targeting Imd pathway receptor in Drosophila melanogaster and repurposing of phyto-inhibitors: structural modulation and molecular dynamics. J Biomol Struct Dyn:1–12

    Google Scholar 

  • Saxena RK, Malhotra B, Batra A (2004) The commercial importance of some fungal enzymes. In: Handbook of fungal biotechnology. CRC Press, Boca Raton, FL, pp 287–298

    Google Scholar 

  • Shankara RBE, Ramachandra MS, Santosh MS, Sujan Ganapathy PS, Richard SA, Zameer F et al (2016) Evaluating the In vitro α-amylase inhibitory potential of gall extracts of Terminalia chebula (Gaertn.) Retz. (Combretaceae). Pharmacog J 8:4

    Google Scholar 

  • Sharma VK, Kumar N, Prakash T, Taylor TD (2010) MetaBioME: a database to explore commercially useful enzymes in metagenomic datasets. Nucleic acids Res 38(Suppl 1):D468–D472

    Article  CAS  PubMed  Google Scholar 

  • Sigoillot JC, Faulds C (2016) Second-generation bioethanol. In: Green fuels technology. Springer, Cham, pp 213–239

    Chapter  Google Scholar 

  • Singh SU, Sharma VI, Soni ML, Das S (2011) Biotechnological applications of industrially important amylase enzyme. Int J Pharma Bio Sci 2(1):486–496

    CAS  Google Scholar 

  • Singh H, Zameer F, Khanum SA, Garampalli RH (2016) Durantol-a phytosterol antifungal contributor from Duranta repens Linn. For organic management of Sorghum Downy Mildew. Eur J Plant Pathol 146(3):671–682

    Article  CAS  Google Scholar 

  • Sulthana R, Taqui SN, Zameer F, Syed U, Syed AA (2018) Adsorption of ethidium bromide from aqueous solution onto nutraceutical industrial fennel seed spent: kinetics and thermodynamics modeling studies. Int J Phytoremediation 20(11):1075–1086

    Article  CAS  PubMed  Google Scholar 

  • Suresh KC, Prathaban M (2015) Optimization of process parameters for carboxymethyl cellulase production under submerged fermentation by Streptomyces lividians. J Acad Ind Res 3(8):371

    Google Scholar 

  • Van der Maarel MJ, Van der Veen B, Uitdehaag JC, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94(2):137–155

    Article  PubMed  Google Scholar 

  • Vihinen M, Peltonen T, Iitiä A, Suominen I, Mäntsälä P (1994) C-terminal truncations of a thermostable Bacillus stearothermophilus α-amylase. Prot Eng Des Select 7(10):1255–1259

    Article  CAS  Google Scholar 

  • Weemaes C, De Cordt S, Goossens K, Ludikhuyze L, Hendrickx M, Heremans K et al (1996) High pressure, thermal, and combined pressure-temperature stabilities of α-amylases from Bacillus species. Biotechnol Bioeng 50(1):49–56

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Kaur T, Devi R, Kour D, Yadav A, Yadav PK et al (2021) Environmental and industrial perspective of beneficial fungal communities: current research and future challenges, Chapter 18. In: Recent trends in mycological research, fungal biology, vol 2. Switzerland AG, Springer Nature, pp 497–517

    Chapter  Google Scholar 

  • Zaky AS, Tucker GA, Daw ZY, Du C (2014) Marine yeast isolation and industrial application. FEMS Yeast Res 14(6):813–825

    Article  CAS  PubMed  Google Scholar 

  • Zameer F, Gopal S (2010) Transcriptome analysis of thiol disulfide redox metabolism genes in Listeria monocytogenes in biofilm and planktonic forms. Int J Pure Appl Sci 4(1):21–27

    Google Scholar 

  • Zameer F, Meghashri S, Gopal S, Rao BR (2010a) Chemical and microbial dynamics during composting of herbal pharmaceutical industrial waste. J Chem 7(1):143–148

    CAS  Google Scholar 

  • Zameer F, Kreft J, Gopal S (2010b) Interaction of Listeria monocytogenes and Staphylococcus epidermidis in dual species biofilms. J Food Saf 30(4):954–968

    Article  Google Scholar 

  • Zameer F, Rukmangada MS, Chauhan JB, Khanum SA, Kumar P, Devi AT et al (2016) Evaluation of adhesive and anti-adhesive properties of Pseudomonas aeruginosa biofilms and their inhibition by herbal plants. Iran J Microbial 8(2):108

    Google Scholar 

Download references

Acknowledgments

Mr. Anirudh Gururaj Patil (LIF-02-2019-20) would like to thank DST-KSTePS, GoK, for providing DST Ph.D. fellowship. Dr. Farhan Zameer (FZ) sincerely thanks Prof. Dr. Shubha Gopal, Department of Studies in Microbiology, University of Mysore, and Prof. Dr. Juergen Kreft, Department of Microbiology, University of Wurzburg, Germany, for their mentorship. FZ is also thankful to Dr. MN Nagendra Prasad, Department of Biotechnology, JSS Science and Technology University, Mysore, and Dr. Shaukath Ara Khanum, Department of Chemistry, Yuvaraja College, University of Mysore, Mysore, for their long-term collaboration in understanding the biology of chemical molecules. All authors thank Prof. Sunil S. More and Prof. Muthuchelian K, SBAS, Dayananda Sagar University (DSU), for continuous support. Further, we thank Mr. Vimal John Samuel, Mrs. K.B. Premakumari, Mr. Sunil, and Prof. V. Murgan, from the School of Pharmacy, DSU, for their technical assistance during the preparation of the manuscript. Further, we extend our gratitude toward the management and office bearers of Dayananda Sagar University, Bengaluru, Karnataka, India, for constant inspiration, motivation, and encouragement to pursue scientific research and for the DSU seed grant funding for the year 2020–2021.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patil, A.G. et al. (2021). Fungal Amylases and Their Industrial Applications. In: Abdel-Azeem, A.M., Yadav, A.N., Yadav, N., Sharma, M. (eds) Industrially Important Fungi for Sustainable Development. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-85603-8_11

Download citation

Publish with us

Policies and ethics