Skip to main content

Placental Types

  • Chapter
  • First Online:
Benirschke's Pathology of the Human Placenta

Abstract

The placenta is more variable between different orders of mammals than any other organ, but fulfills the same basic functions of supplying nutrients and exchange of respiratory gases. This variation may reflect the relatively recent evolutionary history of the placenta, and adaptations to different environmental cues and provision for contrasting reproductive strategies. The chapter provides a survey of the principal placental types at the gross morphological level, and at the level of the histology of the maternal-fetal interface, for the purpose of appreciating the advantages and limitations of animal models of the human placenta. The concepts of the maternal supply of nutrients by histotrophic and hemotrophic exchange are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamson SL, Lu Y, Whiteley KJ, Holmyard D, Hemberger M, Pfarrer C, Cross JC. Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta. Dev Biol. 2002;250:358–73.

    CAS  PubMed  Google Scholar 

  2. Allen WR, Wilsher S. A review of implantation and early placentation in the mare. Placenta. 2009;30:1005–15.

    CAS  PubMed  Google Scholar 

  3. Amoroso EC. Placentation. In: Parkes AS, editor. Marshall's physiology of reproduction. London: Longmans, Green and Co. II; 1952. p. 127–311.

    Google Scholar 

  4. Angiolini E, Fowden A, Coan P, Sandovici I, Smith P, Dean W, Burton G, Tycko B, Reik W, Sibley C, Constancia M. Regulation of placental efficiency for nutrient transport by imprinted genes. Placenta. 2006;27Suppl A:S98–102.

    Google Scholar 

  5. Angiolini E, Coan PM, Sandovici I, Iwajomo OH, Peck G, Burton GJ, Sibley CP, Reik W, Fowden AL, Constancia M. Developmental adaptations to increased fetal nutrient demand in mouse genetic models of igf2-mediated overgrowth. FASEB J. 2011;25:1737–45.

    CAS  PubMed  Google Scholar 

  6. Aoki A, Shiozaki A, Sameshima A, Higashimoto K, Soejima H, Saito S. Beckwith-wiedemann syndrome with placental chorangioma due to h19-differentially methylated region hypermethylation: a case report. J Obstet Gynaecol Res. 2011;37:1872–6.

    PubMed  Google Scholar 

  7. Armes JE, McGown I, Williams M, Broomfield A, Gough K, Lehane F, Lourie R. The placenta in beckwith-wiedemann syndrome: genotype-phenotype associations, excessive extravillous trophoblast and placental mesenchymal dysplasia. Pathology. 2012;44:519–27.

    PubMed  Google Scholar 

  8. Armstrong DL, McGowen MR, Weckle A, Pantham P, Caravas J, Agnew D, Benirschke K, Savage-Rumbaugh S, Nevo E, Kim CJ, Wagner GP, Romero R, Wildman DE. The core transcriptome of mammalian placentas and the divergence of expression with placental shape. Placenta. 2017;57:71–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Barton SC, Surani MA, Norris ML. Role of paternal and maternal genomes in mouse development. Nature. 1984;311:374–6.

    CAS  PubMed  Google Scholar 

  10. Bjorkman N. An atlas of placental fine structure. London: Bailliere, Tindall and Cassell; 1970.

    Google Scholar 

  11. Boyd JD, Hamilton WJ. Development and structure of the human placenta from the end of the 3rd month of gestation. J Obstet Gynaecol Br Commonw. 1967;74:161–226.

    CAS  PubMed  Google Scholar 

  12. Boyd JD, Hamilton WJ. The human placenta. Cambridge: Heffer and Sons; 1970.

    Google Scholar 

  13. Brosens I, Pijnenborg R, Vercruysse L, Romero R. The "great obstetrical syndromes" are associated with disorders of deep placentation. Am J Obstet Gynecol. 2011;204:193–201.

    PubMed  Google Scholar 

  14. Brosens I, Puttemans P, Benagiano G. Placental bed research: I. the placental bed: from spiral arteries remodeling to the great obstetrical syndromes. Am J Obstet Gynecol. 2019;221:437–56.

    PubMed  Google Scholar 

  15. Burton GJ. Oxygen, the janus gas; its effects on human placental development and function. J Anat. 2009;215:27–35.

    CAS  PubMed  Google Scholar 

  16. Burton GJ, Fowden AL. Review: the placenta and developmental programming: balancing fetal nutrient demands with maternal resource allocation. Placenta. 2012;33(Suppl):S23–7.

    PubMed  Google Scholar 

  17. Burton GJ, Hempstock J, Jauniaux E. Oxygen, early embryonic metabolism and free radical-mediated embryopathies. Reprod Biomed Online. 2003;6:84–96.

    PubMed  Google Scholar 

  18. Burton GJ, Jauniaux E. What is the placenta? Am J Obstet Gynecol. 2015;213:S6 e1–S6-8.

    PubMed  Google Scholar 

  19. Burton GJ, Jauniaux E, Charnock-Jones DS. The influence of the intrauterine environment on human placental development. Int J Dev Biol. 2010;54:303–12.

    CAS  PubMed  Google Scholar 

  20. Burton GJ, Watson AL, Hempstock J, Skepper JN, Jauniaux E. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab. 2002;87:2954–9.

    CAS  PubMed  Google Scholar 

  21. Burton GJ, Woods AW, Jauniaux E, Kingdom JC. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta. 2009;30:473–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Capellini I, Nunn CL, Barton RA. Microparasites and placental invasiveness in eutherian mammals. PLoS One. 2015;10:e0132563.

    PubMed  PubMed Central  Google Scholar 

  23. Capellini I, Venditti C, Barton RA. Placentation and maternal investment in mammals. Am Nat. 2011;177:86–98.

    PubMed  Google Scholar 

  24. Carpenter SJ. Light and electron microscopic observations on the morphogenesis of the chorioallantoic placenta of the golden hamster (Cricetus auratus). Days seven through nine of gestation. Am J Anat. 1972;135:445–76.

    CAS  PubMed  Google Scholar 

  25. Carter AM. Animal models of human placentation--a review. Placenta. 2007;28(Suppl A):S41–7.

    PubMed  Google Scholar 

  26. Carter AM. Evolution of factors affecting placental oxygen transfer. Placenta. 2009;30(Suppl A):S19–25.

    PubMed  Google Scholar 

  27. Carter AM. Evolution of placental function in mammals: the molecular basis of gas and nutrient transfer, hormone secretion, and immune responses. Physiol Rev. 2012;92:1543–76.

    CAS  PubMed  Google Scholar 

  28. Carter AM. Ifpa senior award lecture: mammalian fetal membranes. Placenta. 2016;48(Suppl 1):S21–30.

    PubMed  Google Scholar 

  29. Carter AM. Recent advances in understanding evolution of the placenta: insights from transcriptomics. F1000Res. 2018;7:89.

    PubMed  PubMed Central  Google Scholar 

  30. Carter AM, Enders AC. Placentation in mammals: definitive placenta, yolk sac, and paraplacenta. Theriogenology. 2016;86:278–87.

    CAS  PubMed  Google Scholar 

  31. Carter AM, Enders AC, Pijnenborg R. The role of invasive trophoblast in implantation and placentation of primates. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370:20140070.

    Google Scholar 

  32. Carter AM, Mess A. Evolution of the placenta in eutherian mammals. Placenta. 2007;28:259–62.

    CAS  PubMed  Google Scholar 

  33. Carter AM, Mess A. Evolution of the placenta and associated reproductive characters in bats. J Exp Zool B Mol Dev Evol. 2008;310:428–49.

    PubMed  Google Scholar 

  34. Carter AM, Miglino MA, Ambrosio CE, Santos TC, Rosas FC, Neto JA, Lazzarini SM, Carvalho AF, da Silva VM. Placentation in the amazonian manatee (trichechus inunguis). Reprod Fertil Dev. 2008;20:537–45.

    CAS  PubMed  Google Scholar 

  35. Cassidy FC, Charalambous M. Genomic imprinting, growth and maternal-fetal interactions. J Exp Biol. 2018;221:jeb164517.

    PubMed  Google Scholar 

  36. Chapman V, Forrester L, Sanford J, Hastie N, Rossant J. Cell lineage-specific undermethylation of mouse repetitive DNA. Nature. 1984;307:284–6.

    CAS  PubMed  Google Scholar 

  37. Christians JK, Leavey K, Cox BJ. Associations between imprinted gene expression in the placenta, human fetal growth and preeclampsia. Biol Lett. 2017;13:20170643.

    PubMed  PubMed Central  Google Scholar 

  38. Chuong EB. Retroviruses facilitate the rapid evolution of the mammalian placenta. BioEssays. 2013;35:853–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Chuong EB, Rumi MA, Soares MJ, Baker JC. Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat Genet. 2013;45:325–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cleaton MA, Dent CL, Howard M, Corish JA, Gutteridge I, Sovio U, Gaccioli F, Takahashi N, Bauer SR, Charnock-Jones DS, Powell TL, Smith GC, Ferguson-Smith AC, Charalambous M. Fetus-derived dlk1 is required for maternal metabolic adaptations to pregnancy and is associated with fetal growth restriction. Nat Genet. 2016;48:1473–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Coan PM, Burton GJ, Ferguson-Smith AC. Imprinted genes in the placenta--a review. Placenta. 2005;26(Suppl A):S10–20.

    PubMed  Google Scholar 

  42. Coan PM, Ferguson-Smith AC, Burton GJ. Developmental dynamics of the definitive mouse placenta assessed by stereology. Biol Reprod. 2004;70:1806–13.

    CAS  PubMed  Google Scholar 

  43. Coan PM, Ferguson-Smith AC, Burton GJ. Ultrastructural changes in the interhaemal membrane and junctional zone of the murine chorioallantoic placenta across gestation. J Anat. 2005;207:783–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Constancia M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A, Fundele R, Stewart F, Kelsey G, Fowden A, Sibley C, Reik W. Placental-specific igf-ii is a major modulator of placental and fetal growth. Nature. 2002;417:945–8.

    CAS  PubMed  Google Scholar 

  45. Constancia M, Kelsey G, Reik W. Resourceful imprinting. Nature. 2004;432:53–7.

    CAS  PubMed  Google Scholar 

  46. Cornelis G, Funk M, Vernochet C, Leal F, Tarazona OA, Meurice G, Heidmann O, Dupressoir A, Miralles A, Ramirez-Pinilla MP, Heidmann T. An endogenous retroviral envelope syncytin and its cognate receptor identified in the viviparous placental mabuya lizard. Proc Natl Acad Sci U S A. 2017;114:E10991–1000.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cox B, Kotlyar M, Evangelou AI, Ignatchenko V, Ignatchenko A, Whiteley K, Jurisica I, Adamson SL, Rossant J, Kislinger T. Comparative systems biology of human and mouse as a tool to guide the modeling of human placental pathology. Mol Syst Biol. 2009;5:279.

    PubMed  PubMed Central  Google Scholar 

  48. Crosley EJ, Elliot MG, Christians JK, Crespi BJ. Placental invasion, preeclampsia risk and adaptive molecular evolution at the origin of the great apes: evidence from genome-wide analyses. Placenta. 2013;34:127–32.

    CAS  PubMed  Google Scholar 

  49. Cross JC, Baczyk D, Dobric N, Hemberger M, Hughes M, Simmons DG, Yamamoto H, Kingdom JCP. Genes, development and evolution of the placenta. Placenta. 2003;24:123–30.

    CAS  PubMed  Google Scholar 

  50. Dantzer V, Leiser R, Kaufmann P, Luckhardt M. Comparative morphological aspects of placental vascularisation. Trophoblast Res. 1988;3:235–60.

    Google Scholar 

  51. Denner J. Expression and function of endogenous retroviruses in the placenta. APMIS. 2016;124:31–43.

    CAS  PubMed  Google Scholar 

  52. Diplas AI, Lambertini L, Lee MJ, Sperling R, Lee YL, Wetmur J, Chen J. Differential expression of imprinted genes in normal and iugr human placentas. Epigenetics. 2009;4:235–40.

    CAS  PubMed  Google Scholar 

  53. Dupressoir A, Lavialle C, Heidmann T. From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta. 2012;33:663–71.

    CAS  PubMed  Google Scholar 

  54. Dupressoir A, Vernochet C, Harper F, Guegan J, Dessen P, Pierron G, Heidmann T. A pair of co-opted retroviral envelope syncytin genes is required for formation of the two-layered murine placental syncytiotrophoblast. Proc Natl Acad Sci U S A. 2011;108:E1164–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Elliot MG, Crespi BJ. Placental invasiveness and brain-body allometry in eutherian mammals. J Evol Biol. 2008;21:1763–78.

    CAS  PubMed  Google Scholar 

  56. Elliot MG, Crespi BJ. Phylogenetic evidence for early hemochorial placentation in eutheria. Placenta. 2009;30:949–67.

    CAS  PubMed  Google Scholar 

  57. Enders AC. A comparative study of the fine structure in several hemochorial placentas. Am J Anat. 1965;116:29–67.

    CAS  PubMed  Google Scholar 

  58. Enders AC. Reasons for diversity of placental structure. Placenta. 2009;30(Suppl A):S15–8.

    PubMed  Google Scholar 

  59. Enders AC, Carter AM. Comparative placentation: some interesting modifications for histotrophic nutrition -- a review. Placenta. 2006;27(Suppl A):S11–6.

    PubMed  Google Scholar 

  60. Faber JJ, Thornburg K. Placental physiology: structure and function of fetomaternal exchange. New York: Raven; 1983.

    Google Scholar 

  61. Falkowski PG, Katz ME, Milligan AJ, Fennel K, Cramer BS, Aubry MP, Berner RA, Novacek MJ, Zapol WM. The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science. 2005;309:2202–4.

    CAS  PubMed  Google Scholar 

  62. Ferguson-Smith AC. Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet. 2011;12:565–75.

    CAS  PubMed  Google Scholar 

  63. Fischer TV. Placentation in the american beaver (castor canadensis). Am J Anat. 1971;131:159–83.

    CAS  PubMed  Google Scholar 

  64. Foidart JM, Hustin J, Dubois M, Schaaps JP. The human placenta becomes haemochorial at the 13th week of pregnancy. Int J Dev Biol. 1992;36:451–3.

    CAS  PubMed  Google Scholar 

  65. Fowden AL, Sferruzzi-Perri AN, Coan PM, Constancia M, Burton GJ. Placental efficiency and adaptation: endocrine regulation. J Physiol. 2009;587:3459–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Freyer C, Renfree MB. The mammalian yolk sac placenta. J Exp Zool B Mol Dev Evol. 2009;312:545–54.

    PubMed  Google Scholar 

  67. Funk M, Cornelis G, Vernochet C, Heidmann O, Dupressoir A, Conley A, Glickman S, Heidmann T. Capture of a hyena-specific retroviral envelope gene with placental expression associated in evolution with the unique emergence among carnivorans of hemochorial placentation in hyaenidae. J Virol. 2019;93:e01811.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Garratt M, Gaillard JM, Brooks RC, Lemaitre JF. Diversification of the eutherian placenta is associated with changes in the pace of life. Proc Natl Acad Sci U S A. 2013;110:7760–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Georgiades P, Ferguson-Smith AC, Burton GJ. Comparative developmental anatomy of the murine and human definitive placenta. Placenta. 2002;23:3–19.

    CAS  PubMed  Google Scholar 

  70. Grigsby PL. Animal models to study placental development and function throughout normal and dysfunctional human pregnancy. Semin Reprod Med. 2016;34:11–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Grosser O. Vergleichende anatomie und entwicklungsgeschichte der eihäute und der placenta. Wein, Leipzig: W Braumüller; 1909.

    Google Scholar 

  72. Grosser O. Frühentwicklung, eihautbildung und placentation des menschen und der säugetiere. München: JF Bergmann; 1927.

    Google Scholar 

  73. Hamilton WJ, Boyd JD. Development of the human placenta in the first three months of gestation. J Anat. 1960;94:297–328.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hanna CW, Demond H, Kelsey G. Epigenetic regulation in development: is the mouse a good model for the human? Hum Reprod Update. 2018;24:556–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hemberger M. Genetic-epigenetic intersection in trophoblast differentiation: implications for extraembryonic tissue function. Epigenetics. 2010;5:24–9.

    CAS  PubMed  Google Scholar 

  76. Jauniaux E, Poston L, Burton GJ. Placental-related diseases of pregnancy: involvement of oxidative stress and implications in human evolution. Hum Reprod Update. 2006;12:747–55.

    CAS  PubMed  Google Scholar 

  77. Jauniaux E, Watson AL, Hempstock J, Bao Y-P, Skepper JN, Burton GJ. Onset of maternal arterial bloodflow and placental oxidative stress; a possible factor in human early pregnancy failure. Am J Pathol. 2000;157:2111–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kaufmann P. Functional anatomy of the non-primate placenta. Placenta Suppl. 1981;1:13–28.

    Google Scholar 

  79. Kaufmann P, Davidoff M. The Guinea-pig placenta. Adv Anat Embryol Cell Biol. 1977;53:5–91.

    CAS  PubMed  Google Scholar 

  80. Kaufmann P, Luckhardt M, Elger W. The structure of the tupaia placenta. Ii Ultrastructure. Anat Embryol (Berl). 1985;171:211–21.

    CAS  PubMed  Google Scholar 

  81. Kaufmann P, Scheffen I. Placental development. In: Polin R, Fox W, editors. Fetal and neonatal physiology, vol. 1. Philadelphia: WB Saunders; 1992. p. 47–56.

    Google Scholar 

  82. King BF. Comparative anatomy of the placental barrier. Bibl Anat. 1982;22:13–28.

    Google Scholar 

  83. King BF, Mais JJ. Developmental changes in rhesus monkey placental villi and cell columns. Scanning electron microscopy. Anat Embryol (Berl). 1982;165:361–76.

    CAS  PubMed  Google Scholar 

  84. King GJ, Atkinson BA, Robertson HA. Development of the bovine placentome during the second month of gestation. J Reprod Fertil. 1979;55:173–80.

    CAS  PubMed  Google Scholar 

  85. Knox K, Baker JC. Genomic evolution of the placenta using co-option and duplication and divergence. Genome Res. 2008;18:695–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lavialle C, Cornelis G, Dupressoir A, Esnault C, Heidmann O, Vernochet C, Heidmann T. Paleovirology of 'syncytins', retroviral env genes exapted for a role in placentation. Philos Trans R Soc Lond Ser B Biol Sci. 2013;368:20120507.

    Google Scholar 

  87. Leiser R, Kohler T. The blood vessels of the cat girdle placenta. Observations on corrosion casts, scanning electron microscopical and histological studies. Ii. Fetal vasculature. Anat Embryol (Berl). 1984;170:209–16.

    CAS  PubMed  Google Scholar 

  88. Lemaitre C, Tsang J, Bireau C, Heidmann T, Dewannieux M. A human endogenous retrovirus-derived gene that can contribute to oncogenesis by activating the erk pathway and inducing migration and invasion. PLoS Pathog. 2017;13:e1006451.

    PubMed  PubMed Central  Google Scholar 

  89. Litzky JF, Deyssenroth MA, Everson TM, Armstrong DA, Lambertini L, Chen J, Marsit CJ. Placental imprinting variation associated with assisted reproductive technologies and subfertility. Epigenetics. 2017;12:653–61.

    PubMed  PubMed Central  Google Scholar 

  90. Luckett WP. The fine structure of the placental villi of the rhesus monkey (macaca mulatta). Anat Rec. 1970;167:141–64.

    Google Scholar 

  91. Luckett WP. Comparative development and evolution of the placenta in primates. Contrib Primatol. 1974;3:142–234.

    CAS  PubMed  Google Scholar 

  92. Luckhardt M, Kaufmann P, Elger W. The structure of the tupaia placenta. I Histology and vascularisation. Anat Embryol (Berl). 1985;171:201–10.

    CAS  PubMed  Google Scholar 

  93. Lynch VJ, Nnamani MC, Kapusta A, Brayer K, Plaza SL, Mazur EC, Emera D, Sheikh SZ, Grutzner F, Bauersachs S, Graf A, Young SL, Lieb JD, DeMayo FJ, Feschotte C, Wagner GP. Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell Rep. 2015;10:1–11.

    Google Scholar 

  94. Macdonald AA, Bosma AA. Notes on placentation in the suina. Placenta. 1985;6:83–91.

    CAS  PubMed  Google Scholar 

  95. Malassiné A, Frendo J-L, Evain-Brion D. A comparison of placental development and endocrine functions between the human and mouse model. Hum Reprod Update. 2003;9:531–9.

    PubMed  Google Scholar 

  96. Malassine A, Leiser R. Morphogenesis and fine structure of the near-term placenta of talpa europaea: I. Endotheliochorial labyrinth. Placenta. 1984;5:145–58.

    CAS  PubMed  Google Scholar 

  97. Martin CB. Models of placental blood flow. Placenta Suppl. 1981;1:65–80.

    Google Scholar 

  98. Martin RD. Evolution of placentation: implications of mammalian phylogeny. Evol Biol. 2008;35:125–45.

    Google Scholar 

  99. McMinn J, Wei M, Schupf N, Cusmai J, Johnson EB, Smith AC, Weksberg R, Thaker HM, Tycko B. Unbalanced placental expression of imprinted genes in human intrauterine growth restriction. Placenta. 2006;27:540–9.

    CAS  PubMed  Google Scholar 

  100. Mess A, Carter AM. Evolutionary transformations of fetal membrane characters in eutheria with special reference to afrotheria. J Exp Zool B Mol Dev Evol. 2006;306:140–63.

    PubMed  Google Scholar 

  101. Miglino MA, Ambrosio CE, dos Santos MD, Wenceslau CV, Pfarrer C, Leiser R. The carnivore pregnancy: the development of the embryo and fetal membranes. Theriogenology. 2006;66:1699–702.

    PubMed  Google Scholar 

  102. Moffett A, Colucci F. Co-evolution of nk receptors and hla ligands in humans is driven by reproduction. Immunol Rev. 2015;267:283–97.

    CAS  PubMed  Google Scholar 

  103. Monteagudo-Sanchez A, Sanchez-Delgado M, Mora JRH, Santamaria NT, Gratacos E, Esteller M, de Heredia ML, Nunes V, Choux C, Fauque P, de Nanclares GP, Anton L, Elovitz MA, Iglesias-Platas I, Monk D. Differences in expression rather than methylation at placenta-specific imprinted loci is associated with intrauterine growth restriction. Clin Epigenetics. 2019;11:35.

    PubMed  PubMed Central  Google Scholar 

  104. Moore GE, Ishida M, Demetriou C, Al-Olabi L, Leon LJ, Thomas AC, Abu-Amero S, Frost JM, Stafford JL, Chaoqun Y, Duncan AJ, Baigel R, Brimioulle M, Iglesias-Platas I, Apostolidou S, Aggarwal R, Whittaker JC, Syngelaki A, Nicolaides KH, Regan L, Monk D, Stanier P. The role and interaction of imprinted genes in human fetal growth. Philos Trans R Soc Lond B Biol Sci. 2015;370:20140074.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Moore T, Haig D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 1991;7:45–9.

    CAS  PubMed  Google Scholar 

  106. Morrison JL, Berry MJ, Botting KJ, Darby JRT, Frasch MG, Gatford KL, Giussani DA, Gray CL, Harding R, Herrera EA, Kemp MW, Lock MC, McMillen IC, Moss TJ, Musk GC, Oliver MH, Regnault TRH, Roberts CT, Soo JY, Tellam RL. Improving pregnancy outcomes in humans through studies in sheep. Am J Physiol Regul Integr Comp Physiol. 2018;315:R1123–53.

    CAS  PubMed  Google Scholar 

  107. Mossman HW. Comparative morphogenesis of the fetal membranes and accessory uterine structures. Contributions to embryology. Contrib Embryol Carneg Instn. 1937;26:129–246.

    Google Scholar 

  108. Mossman HW. Vertebrate fetal membranes:comparative ontogeny and morphology; evolution; phylogenetic significance; basic functions; research opportunities. London: Macmillan; 1987.

    Google Scholar 

  109. Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O'Brien SJ. Molecular phylogenetics and the origins of placental mammals. Nature. 2001;409:614–8.

    CAS  PubMed  Google Scholar 

  110. Nelissen EC, Dumoulin JC, Busato F, Ponger L, Eijssen LM, Evers JL, Tost J, van Montfoort AP. Altered gene expression in human placentas after ivf/icsi. Hum Reprod. 2014;29:2821–31.

    CAS  PubMed  Google Scholar 

  111. O'Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP, Goldberg SL, Kraatz BP, Luo ZX, Meng J, Ni X, Novacek MJ, Perini FA, Randall ZS, Rougier GW, Sargis EJ, Silcox MT, Simmons NB, Spaulding M, Velazco PM, Weksler M, Wible JR, Cirranello AL. The placental mammal ancestor and the post-k-pg radiation of placentals. Science. 2013;339:662–7.

    CAS  PubMed  Google Scholar 

  112. Perez-Garcia V, Fineberg E, Wilson R, Murray A, Mazzeo CI, Tudor C, Sienerth A, White JK, Tuck E, Ryder EJ, Gleeson D, Siragher E, Wardle-Jones H, Staudt N, Wali N, Collins J, Geyer S, Busch-Nentwich EM, Galli A, Smith JC, Robertson E, Adams DJ, Weninger WJ, Mohun T, Hemberger M. Placentation defects are highly prevalent in embryonic lethal mouse mutants. Nature. 2018;555:463–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Ramsey EM. The placenta: human and animal. New York: Praeger Publishers; 1982.

    Google Scholar 

  114. Ramsey EM, Donner MW. Placental vasculature and circulation. In: Anatomy, physiology, radiology, clinical aspects, atlas and textbook. Stuttgart: Georg Thieme; 1980.

    Google Scholar 

  115. Rawn SM, Cross JC. The evolution, regulation, and function of placenta-specific genes. Annu Rev Cell Dev Biol. 2008;24:159–81.

    CAS  PubMed  Google Scholar 

  116. Reik W, Constancia M, Fowden A, Anderson N, Dean W, Ferguson-Smith A, Tycko B, Sibley C. Regulation of supply and demand for maternal nutrients in mammals by imprinted genes. J Physiol. 2003;547:35–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Renfree MB, Suzuki S, Kaneko-Ishino T. The origin and evolution of genomic imprinting and viviparity in mammals. Philos Trans R Soc Lond Ser B Biol Sci. 2013;368:20120151.

    Google Scholar 

  118. Rhon-Calderon EA, Vrooman LA, Riesche L, Bartolomei MS. The effects of assisted reproductive technologies on genomic imprinting in the placenta. Placenta. 2019;84:37–43.

    PubMed  Google Scholar 

  119. Schroder H. Structural and functional organization of the placenta from a physiological point of view. Bibl Anat. 1982;22:4–12.

    Google Scholar 

  120. Seo H, Bazer FW, Burghardt RC, Johnson GA. Immunohistochemical examination of trophoblast syncytialization during early placentation in sheep. Int. J. Mol. Sci. 2019;20:4530.

    Google Scholar 

  121. Sferruzzi-Perri AN, Sandovici I, Constancia M, Fowden AL. Placental phenotype and the insulin-like growth factors: resource allocation to fetal growth. J Physiol. 2017;595:5057–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Sibley CP, Coan PM, Ferguson-Smith AC, Dean W, Hughes J, Smith P, Reik W, Burton GJ, Fowden AL, Constancia M. Placental-specific insulin-like growth factor 2 (igf2) regulates the diffusional exchange characteristics of the mouse placenta. PNAS. 2004;101:8204–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Starck D. Embryologie. Stuttgart: Thieme; 1975.

    Google Scholar 

  124. Steven DH. Comparative placentation. Essays in structure and function. London: Academic Press; 1975.

    Google Scholar 

  125. Swanson AM, David AL. Animal models of fetal growth restriction: considerations for translational medicine. Placenta. 2015;36:623–30.

    CAS  PubMed  Google Scholar 

  126. van der Heijden FL. Compensation mechanisms for experimental reduction of the functional capacity in the Guinea pig placenta. I Changes in the maternal and fetal placenta vascularization. Acta Anat (Basel). 1981;111:352–8.

    PubMed  Google Scholar 

  127. Vogel P. The current molecular phylogeny of eutherian mammals challenges previous interpretations of placental evolution. Placenta. 2005;26:591–6.

    CAS  PubMed  Google Scholar 

  128. Wildman DE, Chen C, Erez O, Grossman LI, Goodman M, Romero R. Evolution of the mammalian placenta revealed by phylogenetic analysis. Proc Natl Acad Sci U S A. 2006;103:3203–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wimsatt WA. Some aspects of the comparative anatomy of the mammalian placenta. Am J Obstet Gynecol. 1962;84:1568–94.

    CAS  PubMed  Google Scholar 

  130. Wislocki GB, Enders AC. The placentation of the bottle-nosed porpoise (tursiops truncatus). Am J Anat. 1941;68:97–125.

    Google Scholar 

  131. Wooding FB. Current topic: the synepitheliochorial placenta of ruminants: Binucleate cell fusions and hormone production. Placenta. 1992;13:101–13.

    CAS  PubMed  Google Scholar 

  132. Wooding FB, Chambers SG, Perry JS, George M, Heap RB. Migration of binucleate cells in the sheep placenta during normal pregnancy. Anat Embryol (Berl). 1980;158:361–70.

    CAS  PubMed  Google Scholar 

  133. Wooding FB, Stewart F, Mathias S, Allen WR. Placentation in the african elephant, loxodonta africanus: III. Ultrastructural and functional features of the placenta. Placenta. 2005;26:449–70.

    CAS  PubMed  Google Scholar 

  134. Wooding FP, Burton GJ. Comparative placentation. In: Structures, functions and evolution. Berlin: Springer; 2008.

    Google Scholar 

  135. Yamazawa K, Kagami M, Nagai T, Kondoh T, Onigata K, Maeyama K, Hasegawa T, Hasegawa Y, Yamazaki T, Mizuno S, Miyoshi Y, Miyagawa S, Horikawa R, Matsuoka K, Ogata T. Molecular and clinical findings and their correlations in silver-russell syndrome: implications for a positive role of igf2 in growth determination and differential imprinting regulation of the igf2-h19 domain in bodies and placentas. J Mol Med. 2008;86:1171–81.

    CAS  PubMed  Google Scholar 

  136. Zadora J, Singh M, Herse F, Przybyl L, Haase N, Golic M, Yung HW, Huppertz B, Cartwright JE, Whitley G, Johnsen GM, Levi G, Isbruch A, Schulz H, Luft FC, Muller DN, Staff AC, Hurst LD, Dechend R, Izsvak Z. Disturbed placental imprinting in preeclampsia leads to altered expression of dlx5, a human-specific early trophoblast marker. Circulation. 2017;136:1824–39.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham J. Burton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burton, G.J. (2022). Placental Types. In: Baergen, R.N., Burton, G.J., Kaplan, C.G. (eds) Benirschke's Pathology of the Human Placenta. Springer, Cham. https://doi.org/10.1007/978-3-030-84725-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84725-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84724-1

  • Online ISBN: 978-3-030-84725-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics