Skip to main content

Pumpkin Bio-Wastes as Source of Functional Ingredients

  • Chapter
  • First Online:
Mediterranean Fruits Bio-wastes

Abstract

A large amount of wastes and by-products are generated during the vegetables and fruits production and food industry. These wastes create increasing disposal and severe environmental problems or discarded with a loss of valuable biomass and nutrients. However, these wastes contain bioactive compounds of great potential and value-added compounds. These wastes or by-products can be incorporated as food additives and/or used as nutraceuticals. Therefore, the valorization of agro wastes or by-products from the food industry significantly contributing to a sustainable food chain from an environmental and economic point of view. Pumpkin is a gourd-like fruit of the genus Cucurbita (family Cucurbitaceae), indigenous to the tropical and sub-tropical countries. Worldwide, three common pumpkin species are grown, namely Cucurbita pepo, Cucurbita maxima, and Cucurbita moschata, which economically represent the most important species. Globally, China, India, Ukraine, Egypt, and the United States are the major pumpkin-producing countries. Pumpkins are a rich source of important natural bioactive compounds such as carotenoids, tocopherols, phytosterols, phenolics, antidiabetic polysaccharides, minerals, vitamins, antifungal proteins, essential and nonessential amino acids, pectin, and fibers. Besides, the pumpkin seed oil is rich in unsaturated fatty acids (omega-6 and omega-9). The bioactive compounds found in pumpkin exhibit a wide range of biological activities such as antioxidant, anti-inflammatory, cardio protective, antiaging, antimicrobial anticancer, and prebiotic activities. The wastes from pumpkin fruits and biomass from seed oil production retained great amounts of these bioactive compounds, representing a potential for their use as a nutraceutical or dietary supplement. The present chapter describes the economic values, chemical composition, bioactive compounds, health benefits, and pumpkin fruits’ biological activity. In addition, the current status of the use, recovery, food, and non-food applications of pumpkin processing by-products, including peels, pulp, and seeds. The technologies employed to obtain and isolate the highly value-added components from these by-products will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANN :

Artificial Neural Networks

CSE:

Conventional Solvent Extraction

DLQI:

Dermatology Life Quality Index

DM:

Diabetes mellitus

DPP-IV :

dipeptidyl peptidase IV

DPS:

Defatted Pumpkin Seeds

G-6-P DH:

Glucose-6-phosphate dehydrogenase

GSH:

Glutathione

HECSI:

Hand Eczema Severity Index

MDA :

malondialdehyde

NO:

Nitric oxide

NSAID :

Nonsteroidal anti-inflammatory drug

PP:

Pumpkin Peel

PPAR-γ :

Peroxisome proliferator-activated receptor gamma

PPE:

Pumpkin Peel Extract

PPF:

Pumpkin Peel Flour

PPP:

Pumpkin Peel Powder

PS:

Pumpkin Seeds

PSC:

Pumpkin Seed Cake

PSCF:

Pumpkin Seed cake Flour

PSO:

Pumpkin Seed Oil

PSP-1:

Protein Bound Polysaccharide-I

PTP-1B:

Protein-tyrosine Phosphatase

RSM:

Response Surface Methodology

SFE:

Supercritical Fluid Extraction

SWE:

Subcritical Water Extraction

TBHQ:

tert-butyl hydroquinone

UAE:

Ultrasound-assisted Extraction

References

  • Abd El-Aziz, A., & Abd El-Kalek, H. (2011). Antimicrobial proteins and oil seeds from pumpkin (Cucurbita moschata). Nature and Science, 9(3), 105–119.

    Google Scholar 

  • Abou Seif, H. S. (2014). Ameliorative effect of pumpkin oil (Cucurbita pepo L.) against alcohol-induced hepatotoxicity and oxidative stress in albino rats. Beni Suef University Journal of Basic and Applied Sciences, 3(3), 178–185.

    Google Scholar 

  • Adnan, M., Gul, S., Batool, S., Fatima, B., Rehman, A., Yaqoob, S., Shabir, H., Yousaf, T., Mussarat, S., & Ali, N. (2017). A review on the ethnobotany, phytochemistry, pharmacology and nutritional composition of Cucurbita pepo L. The Journal of Phytopharmacology, 6(2), 133–139.

    Google Scholar 

  • Agrawal, A., & Amrutkar, S. (2019). Novel use of waste fruit-seeds for enhancing anti-corrosive performance in epoxy system. The Bombay Technologist, 66(1), 31–36.

    Google Scholar 

  • Ahmad, G., & Khan, A. A. (2019). Pumpkin: Horticultural importance and its roles in various forms; a review. International Journal of Horticulture and Agriculture, 4(1), 1–6.

    Google Scholar 

  • Ahmed, W. M. M., Alsiddig, S. A., Abdelgadir, M. O., Eltayeb, A., Ismail, E. O. B., & Elhassan, I. H. (2020). Quality evaluation of beef sausage formulated with different levels of dried pumpkin powder. International Journal of Multidisciplinary and Current Research, 8, 150–154.

    Google Scholar 

  • Alfawaz, M. A. (2004). Chemical composition and oil characteristics of pumpkin (Cucurbita maxima) seed kernels. Food Science and Agriculture, 2(1), 5–18.

    Google Scholar 

  • Al-Khalifa, S. (1996). Physicochemical characteristics, fatty acid composition, and lipoxygenase activity of crude pumpkin and melon seed oils. Journal of Agricultural and Food Chemistry, 44(4), 964–966.

    CAS  Google Scholar 

  • Al-Okbi, S., Mohamed, D. A., Kandil, E., Abo-Zeid, M., Mohammed, S., & Ahmed, E. (2017). Anti-inflammatory activity of two varieties of pumpkin seed oil in an adjuvant arthritis model in rats. Grasas y Aceites, 68(1), 180.

    Google Scholar 

  • Al-Okbi, S. Y., Mohamed, D. A., Hamed, T. E., & Esmail, R. S. (2014). Rice bran oil and pumpkin seed oil alleviate oxidative injury and fatty liver in rats fed high fructose diet. Polish Journal of Food and Nutrition Sciences, 64(2), 127–133.

    CAS  Google Scholar 

  • Amin, M. Z., Islam, T., Mostofa, F., Uddin, M. J., Rahman, M. M., & Satter, M. A. (2019). Comparative assessment of the physicochemical and biochemical properties of native and hybrid varieties of pumpkin seed and seed oil (Cucurbita maxima Linn.). Heliyon, 5(12), e02994.

    PubMed  PubMed Central  Google Scholar 

  • Andrikopoulos, N. K., Chiou, A., & Mylona, A. (2004). Triacylglycerol species of less common edible vegetable oils. Food Reviews International, 20(4), 389–405.

    CAS  Google Scholar 

  • Ayyildiz, H. F., Topkafa, M., & Kara, H. (2019). Pumpkin (Cucurbita pepo L.) seed oil. In M. F. Ramadan (Ed.), Fruit oils: chemistry and functionality. Springer. https://doi.org/10.1007/978-3-030-12473-1_41

    Chapter  Google Scholar 

  • Azevedo-Meleiro, C. H., & Rodriguez-Amaya, D. B. (2007). Qualitative and Quantitative Differences in Carotenoid Composition among Cucurbita moschata, Cucurbita maxima, and Cucurbita pepo. Journal of Agricultural and Food Chemistry, 55(10), 4027–4033.

    CAS  PubMed  Google Scholar 

  • Azman, M., & Ahmad, F. T. (2019). The effect of pumpkin peels (Cucurbita Maxima) on the quality of Japanese quail flesh. Malaysian Applied Biology Journal, 48(1), 185–191.

    Google Scholar 

  • Badr, S. E., Shaaban, M., Elkholy, Y. M., Helal, M. H., Hamza, A. S., Masoud, M. S., & El Safty, M. M. (2011). Chemical composition and biological activity of ripe pumpkin fruits (Cucurbita pepo L.) cultivated in Egyptian habitats. Natural Product Research, 25(16), 1524–1539.

    CAS  PubMed  Google Scholar 

  • Barakat, L. A., & Mahmoud, R. H. (2011). The antiatherogenic, renal protective and immunomodulatory effects of purslane, pumpkin and flax seeds on hypercholesterolemic rats. North American Journal of Medical Sciences, 3(9), 411.

    PubMed  PubMed Central  Google Scholar 

  • Bardaa, S., Halima, N. B., Aloui, F., Mansour, R. B., Jabeur, H., Bouaziz, M., & Sahnoun, Z. (2016). Oil from pumpkin (Cucurbita pepo L.) seeds: Evaluation of its functional properties on wound healing in rats. Lipids in Health and Disease, 15(1), 1–12.

    Google Scholar 

  • Bemfeito, C. M., Carneiro, J. D. D. S., Carvalho, E. E. N., Coli, P. C., Pereira, R. C., & Boas, E. V. D. B. V. (2020). Nutritional and functional potential of pumpkin (Cucurbita moschata) pulp and pequi (Caryocar brasiliense Camb.) peel flours. Journal of Food Science and Technology, 57(10), 3920–3925.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bharti, S. K., Kumar, A., Sharma, N. K., Prakash, O., Jaiswal, S. K., Krishnan, S., Gupta, A. K., & Kumar, A. (2013). Tocopherol from seeds of Cucurbita pepo against diabetes: Validation by in vivo experiments supported by computational docking. Journal of the Formosan Medical Association, 112(11), 676–690.

    CAS  PubMed  Google Scholar 

  • Blanco-Díaz, M. T., Font, R., Martínez-Valdivieso, D., & Del Río-Celestino, M. (2015). Diversity of natural pigments and phytochemical compounds from exocarp and mesocarp of 27 Cucurbita pepo accessions. Scientia Horticulturae, 197, 357–365.

    Google Scholar 

  • Bombardelli, E., & Morazzoni, P. (1997). Cucurbita pepo L. Fitoterapia, 68, 291–302.

    CAS  Google Scholar 

  • Bravi, E., Perretti, G., & Montanari, L. (2006). Fatty acids by high-performance liquid chromatography and evaporative light-scattering detector. Journal of Chromatography A, 1134(1-2), 210–214.

    CAS  PubMed  Google Scholar 

  • Chouaibi, M., Daoued, K. B., Riguane, K., Rouissi, T., & Ferrari, G. (2020). Production of bioethanol from pumpkin peel wastes: Comparison between response surface methodology (RSM) and artificial neural networks (ANN). Industrial Crops and Products, 155, 112822.

    CAS  Google Scholar 

  • Considine, D. M., & Considine, G. D. (2013). Van Nostrand’s scientific encyclopedia. Springer Science & Business Media.

    Google Scholar 

  • Cuco, R. P., Cardozo-Filho, L., & da Silva, C. (2019). Simultaneous extraction of seed oil and active compounds from peel of pumpkin (Cucurbita maxima) using pressurized carbon dioxide as solvent. The Journal of Supercritical Fluids, 143, 8–15.

    CAS  Google Scholar 

  • Dar, A., Sofi, S., & Rafiq, S. (2017). Pumpkin the functional and therapeutic ingredient: A review. International Journal of Food Science and Nutrition, 2(6), 165-170.

    Google Scholar 

  • Das, U. N. (2006). Essential fatty acids: Biochemistry, physiology and pathology. Biotechnology Journal: Healthcare Nutrition Technology, 1(4), 420–439.

    CAS  Google Scholar 

  • de Escalada Pla, M., Ponce, N., Stortz, C., Gerschenson, L., & Rojas, A. (2007). Composition and functional properties of enriched fiber products obtained from pumpkin (Cucurbita moschata Duchesne ex Poiret). LWT-Food Science and Technology, 40(7), 1176–1185.

    Google Scholar 

  • Demiral, İ., & Şamdan, C. A. (2016). Preparation and characterisation of activated carbon from pumpkin seed shell using H3PO4. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A-Uygulamalı Bilimler ve Mühendislik, 17(1), 125–138.

    Google Scholar 

  • Dona, J. S. M. (2019). Isolation and characterization of pectin from pumpkin (Cucurbita maxima) waste and its food application. Asian Food Science Journal., 13(2), 1–9.

    Google Scholar 

  • El-Adawy, T. A., & Taha, K. M. (2001). Characteristics and composition of watermelon, pumpkin, and paprika seed oils and flours. Journal of Agricultural and Food Chemistry, 49(3), 1253–1259.

    CAS  PubMed  Google Scholar 

  • El-Boghdady, N. A. (2011). Protective effect of ellagic acid and pumpkin seed oil against methotrexate-induced small intestine damage in rats. Indian Journal of Biochemistry & Biochemistry 48 (6), 380-387.

    Google Scholar 

  • Elfiky, S., Elelaimy, I., Hassan, A., Ibrahim, H., & Elsayad, R. (2012). Protective effect of pumpkin seed oil against genotoxicity induced by azathioprine. The Journal of Basic & Applied Zoology, 65(5), 289–298.

    CAS  Google Scholar 

  • El-Mosallamy, A. E., Sleem, A. A., Abdel-Salam, O. M., Shaffie, N., & Kenawy, S. A. (2012). Antihypertensive and cardioprotective effects of pumpkin seed oil. Journal of Medicinal Food, 15(2), 180–189.

    PubMed  Google Scholar 

  • Fahim, A. T., Abd-El Fattah, A. A., Agha, A. M., & Gad, M. Z. (1995). Effect of pumpkin-seed oil on the level of free radical scavengers induced during adjuvant-arthritis in rats. Pharmacological Research, 31(1), 73–79.

    CAS  PubMed  Google Scholar 

  • Fruhwirth, G. O., & Hermetter, A. (2007). Seeds and oil of the Styrian oil pumpkin: Components and biological activities. The European Journal of Lipid Science and Technology, 109, 1128–1140.

    CAS  Google Scholar 

  • George, S. A. S. S. S. (2020). Preparation of pumpkin pulp and Peel flour and study their impact in the biscuit industry journal of biology. Agriculture and Healthcare, 10(6), 25–33.

    Google Scholar 

  • Ghisoni, S., Chiodelli, G., Rocchetti, G., Kane, D., & Lucini, L. (2017). UHPLC-ESI-QTOF-MS screening of lignans and other phenolics in dry seeds for human consumption. Journal of Functional Foods, 34, 229–236.

    CAS  Google Scholar 

  • Gill, N., & Bali, M. (2011). Isolation of anti ulcer cucurbitane type triterpenoid from the seeds of Cucurbita pepo. Research Journal of Phytochemistry, 5(2), 70–79.

    CAS  Google Scholar 

  • Glew, R. H., Glew, R. S., Chuang, L. T., Huang, Y. S., Millson, M., Constans, D., & Vanderjagt, D. J. (2006). Amino acid, mineral and fatty acid content of pumpkin seeds (Cucurbita spp.) and Cyperus esculentus nuts in the republic of Niger. Plant Foods for Human Nutrition, 61, 51–56.

    CAS  PubMed  Google Scholar 

  • Gossell-Williams, M., Davis, A., & O'connor, N. (2006). Inhibition of testosterone-induced hyperplasia of the prostate of Sprague-dawley rats by pumpkin seed oil. Journal of Medicinal Food, 9(2), 284–286.

    CAS  PubMed  Google Scholar 

  • Gossell-Williams, M., Lyttle, K., Clarke, T., Gardner, M., & Simon, O. (2008). Supplementation with pumpkin seed oil improves plasma lipid profile and cardiovascular outcomes of female non-ovariectomized and ovariectomized Sprague-Dawley rats. Phytotherapy Research, 22(7), 873–877.

    CAS  PubMed  Google Scholar 

  • Habib, A., Biswas, S., Siddique, A. H., Manirujjaman, M., Uddin, B., Hasan, S., Khan, M. M. H., Uddin, M., Islam, M., Hasan, M., Rahman, M., Asaduzzaman, M., Rahman, M., Khatun, M., Islam, M. A., & Rahman, M. (2015). Nutritional and lipid composition analysis of pumpkin seed (Cucurbita maxima Linn.). Nutrition and Food Sciences, 5(4), 1000374.

    Google Scholar 

  • Haiyan, Z., Bedgood, D. R., Bishop, A. G., Prenzler, P. D., & Robards, K. (2007). Endogenous biophenol, fatty acid and volatile profiles of selected oils. Food Chemistry, 100(4), 1544–1551.

    Google Scholar 

  • Hamed, A., Elkhedir, A., & Mustafa, S. (2017). Effect of Soxhlet method extraction on characterization of pectin of pumpkin peels. Journal of Experimental Food Chemistry, 3(1), 1–3.

    Google Scholar 

  • Hamed, A. A. R., & Mustafa, S. E. (2018). Extraction and assessment of pectin from pumpkin peels. Biofarmasi Journal of Natural Product Biochemistry, 16(1), 1–7.

    Google Scholar 

  • Hammer, K. A., Carson, C. F., & Riley, T. V. (1999). Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology, 86(6), 985–990.

    CAS  PubMed  Google Scholar 

  • Hernández-Santos, B., Rodríguez-Miranda, J., Herman-Lara, E., Torruco-Uco, J. G., Carmona-García, R., Juárez-Barrientos, J. M., Chávez-Zamudio, R., & Martínez-Sánchez, C. E. (2016). Effect of oil extraction assisted by ultrasound on the physicochemical properties and fatty acid profile of pumpkin seed oil (Cucurbita pepo). Ultrasonics Sonochemistry, 31, 429–436.

    PubMed  Google Scholar 

  • Hong, H., Kim, C.-S., & Maeng, S. (2009). Effects of pumpkin seed oil and saw palmetto oil in Korean men with symptomatic benign prostatic hyperplasia. Nutrition Research and Practice, 3(4), 323–327.

    PubMed  PubMed Central  Google Scholar 

  • Hossain, M. E., Sultana, S. A., Karim, M. H., & Ahmed, M. I. (2015). Vegetable peels: A promising feed resource for livestock. Journal of Animal Feed Research, 5, 33–39.

    CAS  Google Scholar 

  • Houston, M. C. (2010). Nutrition and nutraceutical supplements in the treatment of hypertension. Expert Review of Cardiovascular Therapy, 8(6), 821–833.

    CAS  PubMed  Google Scholar 

  • Isutsa, D. K., & Mallowa, S. (2013). Increasing leaf harvest intensity enhances edible leaf vegetable yields and decreases mature fruit yields in multi-purpose pumpkin. Journal of Agricultural and Biological Science, 8(8), 610–615.

    Google Scholar 

  • Jabeen, A., Hassan, S., Masoodi, L., Ajaz, N., & Rafiq, A. (2018). Physico-chemical composition and functional properties of blended flour obtained from lentil, pumpkin and barley for development of extrudates. Journal of Food Processing & Technology, 9(1), 1–9.

    CAS  Google Scholar 

  • Jiao, J., Li, Z.-G., Gai, Q.-Y., Li, X.-J., Wei, F.-Y., Fu, Y.-J., & Ma, W. (2014). Microwave-assisted aqueous enzymatic extraction of oil from pumpkin seeds and evaluation of its physicochemical properties, fatty acid compositions and antioxidant activities. Food Chemistry, 147, 17–24.

    CAS  PubMed  Google Scholar 

  • Jun, H.-I., Lee, C.-H., Song, G.-S., & Kim, Y.-S. (2006). Characterization of the pectic polysaccharides from pumpkin peel. LWT-Food Science and Technology, 39(5), 554–561.

    CAS  Google Scholar 

  • Junli, L., YunQiang, W., De, Z., XiaoHua, H., ZhengQin, Z., & ChangPing, X. (2010). Characterization and bioactivity of water-soluble polysaccharides from the fruit of pumpkin. Journal of Food, Agriculture & Environment, 8(2), 237–241.

    Google Scholar 

  • Kaur, H., Sharma, P. (2018). Extraction of bioactive peptides from pumpkin seed and their application extraction of bioactive peptides from pumpkin seed and their application. Lovely Professional University, MSc thesis.

    Google Scholar 

  • Kaur, M., & Sharma, S. (2017). Development and nutritional evaluation of pumpkin seed (Cucurbita moschata) supplemented products. Food Science, 8(2), 310–318.

    Google Scholar 

  • Kaur, S., Panghal, A., Garg, M., Mann, S., Khatkar, S. K., Sharma, P., & Chhikara, N. (2019). Functional and nutraceutical properties of pumpkin-a review. Nutrition & Food Science, 50(2), 384–401.

    Google Scholar 

  • Khademi, A., Mansuri, P., Pahlevan, D., BOZORG, M., Nasiri, M., Hejazi, S., Azizian, Z., & Shirbeigi, L. (2020). Efficacy of pumpkin ointment in treatment of chronic hand eczema: A randomized, active-controlled, double blind clinical trial. Iranian Journal of Public Health, 49(7), 1339–1347.

    PubMed  PubMed Central  Google Scholar 

  • Kim, M. Y., Kim, E. J., Kim, Y.-N., Choi, C., & Lee, B.-H. (2012). Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts. Nutrition Research and Practice, 6(1), 21–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Košťálová, Z., Hromádková, Z., & Ebringerová, A. (2009). Chemical evaluation of seeded fruit biomass of oil pumpkin (Cucurbita pepo L. var. Styriaca). Chemical Papers, 63(4), 406–413.

    Google Scholar 

  • Kreft, I., Stibilj, V., & Trkov, Z. (2002). Iodine and selenium contents in pumpkin (Cucurbita pepo L.) oil and oil-cake. European Food Research and Technology, 215, 279–281.

    CAS  Google Scholar 

  • Kreft, M., Zorec, R., Janeš, D., & Kreft, S. (2009). Histolocalisation of the oil and pigments in the pumpkin seed. Annals of Applied Biology, 154(3), 413–418.

    Google Scholar 

  • Krimer-Malešević, V. (2020). Chapter 37—Pumpkin Seeds: Phenolic Acids in Pumpkin Seed (Cucurbita pepo L.), Nuts and Seeds in Health and Disease Prevention (Second Edition). Academic Press.:533–542.

    Google Scholar 

  • Kulczyński, B., & Gramza-Michałowska, A. (2019). The profile of secondary metabolites and other bioactive compounds in Cucurbita pepo L. and Cucurbita moschata pumpkin cultivars. Molecules, 24(16), 2945.

    PubMed Central  Google Scholar 

  • Kulkarni, A., & Joshi, D. (2013). Effect of replacement of wheat flour with pumpkin powder on textural and sensory qualities of biscuit. International Food Research Journal, 20(2), 587.

    CAS  Google Scholar 

  • Kumar, D. J., & Binnal, P. (2012). Performance evaluation of a single cylinder diesel engine fueled with biodiesel produced from pumpkin oil. Journal of Scientific & Industrial Research, 71, 75–78.

    CAS  Google Scholar 

  • Lalnunthari, C., Devi, L. M., Amami, E., & Badwaik, L. S. (2019). Valorisation of pumpkin seeds and peels into biodegradable packaging films. Food and Bioproducts Processing, 118, 58–66.

    CAS  Google Scholar 

  • Lestari, B., & Meiyanto, E. (2018). A review: The emerging nutraceutical potential of pumpkin seeds. Indonesian Journal of Cancer Chemoprevention, 9(2), 92–101.

    Google Scholar 

  • Li, W., Koike, K., Tatsuzaki, M., Koide, A., & Nikaido, T. (2005). Cucurbitosides F–M, acylated phenolic glycosides from the seeds of Cucurbita pepo. Journal of Natural Products, 68(12), 1754–1757.

    CAS  PubMed  Google Scholar 

  • Makni, M., Fetoui, H., Gargouri, N. K., Garoui, E. M., & Zeghal, N. (2011). Antidiabetic effect of flax and pumpkin seed mixture powder: Effect on hyperlipidemia and antioxidant status in alloxan diabetic rats. Journal of Diabetes and its Complications, 25(5), 339–345.

    PubMed  Google Scholar 

  • Makni, M., Fetoui, H., Garoui, E. M., Gargouri, N. K., Jaber, H., Makni, J., Boudawara, T., & Zeghal, N. (2010). Hypolipidemic and hepatoprotective seeds mixture diet rich in ω-3 and ω-6 fatty acids. Food and Chemical Toxicology, 48(8-9), 2239–2246.

    CAS  PubMed  Google Scholar 

  • Mala, S. K., Aathira, P., Anjali, E., Srinivasulu, K., & Sulochanamma, G. (2018). Effect of pumpkin powder incorporation on the physico-chemical, sensory and nutritional characteristics of wheat flour muffins. International Food Research Journal, 25(3), 1081–1087.

    Google Scholar 

  • Malkanthi, A., & Hiremath, U. S. (2020). Pumpkin powder (Cucurbita maxima)-supplemented string hoppers as a functional food. International Journal of Food and Nutritional Sciences, 9(1), 2.

    Google Scholar 

  • Mansour, E., Dworschák, E., Perédi, J., & Lugasi, A. (1993). Evaluation of pumpkin seed (Cucurbita pepo, Kakai 35) as a new source of protein. Acta Alimentaria, 22, 3–13.

    CAS  Google Scholar 

  • Mansour, E., Dworschak, E., Huszka, T., Hovari, J., & Gergely, A. (1996). Utilization of pumpkin seed and rapeseed proteins in the preparation of bologna type sausages. Acta Alimentaria, 25(1), 25–36.

    CAS  Google Scholar 

  • Mansour, E., Dworschak, E., Pollhamer, Z., Gergely, A., & Hovari, J. (1999). Pumpkin and canola seed proteins and bread quality. Accreditation and Quality Assurance, 4(1-2), 59–70.

    Google Scholar 

  • Mazur, W., & Adlercreutz, H. (1998). Naturally occurring oestrogens in food. Pure and Applied Chemistry, 70(9), 1759–1776.

    CAS  Google Scholar 

  • Medjakovic, S., Hobiger, S., Ardjomand-Woelkart, K., Bucar, F., & Jungbauer, A. (2016). Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors. Fitoterapia, 110, 150–156.

    CAS  PubMed  Google Scholar 

  • Mirhosseini, H., Rashid, N. F. A., Amid, B. T., Cheong, K. W., Kazemi, M., & Zulkurnain, M. (2015). Effect of partial replacement of corn flour with durian seed flour and pumpkin flour on cooking yield, texture properties, and sensory attributes of gluten free pasta. LWT-Food Science and Technology, 63(1), 184–190.

    CAS  Google Scholar 

  • Mishra, S., & Sharma, K. (2019). Development of pumpkin peel cookies and its nutritional composition. Journal of Pharmacognosy and Phytochemistry, 8(4), 370–372.

    CAS  Google Scholar 

  • Mitra, P., Ramaswamy, H. S., & Chang, K. S. (2009). Pumpkin (Cucurbita maxima) seed oil extraction using supercritical carbon dioxide and physicochemical properties of the oil. Journal of Food Engineering, 95(1), 208–213.

    CAS  Google Scholar 

  • Mohamed, G., Ibrahim, S., & Sayed, H. (2009). Phenolic constituents of Cucurbita pepo L. cvEskandrani (summer squash) flowers. Bulletin of pharmaceutical Sciences. Assiut, 32(2), 311–319.

    CAS  Google Scholar 

  • Montesano, D., Blasi, F., Simonetti, M. S., Santini, A., & Cossignani, L. (2018). Chemical and nutritional characterization of seed oil from Cucurbita maxima L. (var. Berrettina) pumpkin. Food, 7(3), 30.

    Google Scholar 

  • Morocho, K. M., Khairat, E. A. E., Manzano, P., & Choez, I. (2019). Fatty acid profile of agro industry waste of pumpkin Cucurbita maxima. Journal of Food Nutrition & Health, 2(2), 1–5.

    Google Scholar 

  • Murkovic, M., Hillebrand, A., Winkler, J., Leitner, E., & Pfannhauser, W. (1996a). Variability of fatty acid content in pumpkin seeds (Cucurbita pepo L.). European Food Research and Technology, 203, 216–219.

    CAS  Google Scholar 

  • Murkovic, M., Hillebrand, A., Winkler, J., & Pfannhauser, W. (1996b). Variability of vitamin E content in pumpkin seeds (Cucurbita pepo L.). European Food Research and Technology, 202, 275–278.

    CAS  Google Scholar 

  • Murkovic, M., Mülleder, U., & Neunteufl, H. (2002). Carotenoid content in different varieties of pumpkins. Journal of Food Composition and Analysis, 15(6), 633–638.

    CAS  Google Scholar 

  • Nawirska-Olszańska, A., Kita, A., Biesiada, A., Sokół-Łętowska, A., & Kucharska, A. Z. (2013). Characteristics of antioxidant activity and composition of pumpkin seed oils in 12 cultivars. Food Chemistry, 139(1-4), 155–161.

    PubMed  Google Scholar 

  • Nishimura, M., Ohkawara, T., Sato, H., Takeda, H., & Nishihira, J. (2014). Pumpkin seed oil extracted from Cucurbita maxima improves urinary disorder in human overactive bladder. Journal of Traditional and Complementary Medicine, 4(1), 72–74.

    PubMed  PubMed Central  Google Scholar 

  • Nkosi, C., Opoku, A., & Terblanche, S. (2006). Antioxidative effects of pumpkin seed (Cucurbita pepo) protein isolate in CCl4-induced liver injury in low-protein fed rats. Phytotherapy Research, 20(11), 935–940.

    CAS  PubMed  Google Scholar 

  • Nuerbiya, Y., Ayinuer, R., & Abdulla, A. (2014). Optimization of extraction pigment from pumpkin skin product’s stability. Food Fermentation Industries, 12, 216–222.

    Google Scholar 

  • Nyam, K. L., Tan, C. P., Lai, O. M., Long, K., & Che Man, Y. B. (2009). Physicochemical properties and bioactive compounds of selected seed oils. LWT-Food Science and Technology, 42(8), 1396–1403.

    CAS  Google Scholar 

  • Nyam, K., Lau, M., & Tan, C. (2013). Fibre from pumpkin (Cucurbita pepo L.) seeds and rinds: Physico-chemical properties, antioxidant capacity and application as bakery product ingredients. Malaysian Journal of Nutrition, 19, 1.

    Google Scholar 

  • Orsavova, J., Misurcova, L., Ambrozova, J. V., Vicha, R., & Mlcek, J. (2015). Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. International Journal of Molecular Sciences, 16, 12871–12890.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orzolek, M.D. (1995). Pumpkin production. Penn State Extension, College of Agricultural Sciences, Cooperative Extension. https://extension.psu.edu/pumpkin-production

    Google Scholar 

  • Özbek, A. Z., & Ergönül, G. P. (2020). Chapter 18—Cold pressed pumpkin seed oil. In M. F. Ramadan (Ed.), Cold pressed oils (pp. 219–229). Academic. https://doi.org/10.1016/B978-0-12-818188-1.00018-9

    Chapter  Google Scholar 

  • Parfitt, J., Barthel, M., & Macnaughton, S. (2010). Food waste within food supply chains: Quantification and potential for change to 2050. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 3065–3081.

    Google Scholar 

  • Park, S.-C., Lee, J. R., Kim, J.-Y., Hwang, I., Nah, J.-W., Cheong, H., Park, Y., & Hahm, K.-S. (2010). Pr-1, a novel antifungal protein from pumpkin rinds. Biotechnology Letters, 32(1), 125.

    CAS  PubMed  Google Scholar 

  • Parry, J. W., Cheng, Z., Moore, J., et al. (2008). Fatty acid composition, antioxidant properties, and Antiproliferative capacity of selected cold-pressed seed flours. Journal of the American Oil Chemists’ Society, 85, 457–464.

    CAS  Google Scholar 

  • Patel, D., Vaghasiya, J., Pancholi, S., & Paul, A. (2012). Therapeutic potential of secoisolariciresinol diglucoside: A plant lignan. International Journal of Pharmaceutical Sciences and Drug Research, 4(1), 15–18.

    Google Scholar 

  • Peiretti, P. G., Meineri, G., Gai, F., Longato, E., & Amarowicz, R. (2017). Antioxidative activities and phenolic compounds of pumpkin (Cucurbita pepo) seeds and amaranth (Amaranthus caudatus) grain extracts. Natural Product Research, 31(18), 2178–2182.

    CAS  PubMed  Google Scholar 

  • Peter, E. A. C., Hudson, N., Alice, O. N., Stanley, O., William, T., Ijani, A. S. M., & Anne, S. (2013). Evaluation of micronutrients in seeds of pumpkin varieties grown by smallholder farmers in the Lake Victoria Basin. African Journal of Food Science and Technology, 4(10), 221–228.

    Google Scholar 

  • Phillips, K. M., Ruggio, D. M., & Ashraf-Khorassani, M. (2005). Phytosterol composition of nuts and seeds commonly consumed in the United States. Journal of Agricultural and Food Chemistry, 53(24), 9436–9445.

    CAS  PubMed  Google Scholar 

  • Pirman, T., Marič, M., & Orešnik, A. (2007). Changes in digestibility and biological value of pumpkin seed cake protein after limiting amino acids supplementation. Krmiva: Časopis o hranidbi životinja, proizvodnji i tehnologiji krme, 49(2), 95–102.

    Google Scholar 

  • Popović, S., Peričin, D., Vaštag, Ž., Lazić, V., & Popović, L. (2012). Pumpkin oil cake protein isolate films as potential gas barrier coating. Journal of Food Engineering, 110(3), 374–379.

    Google Scholar 

  • Popović, S., Peričin, D., Vaštag, Ž., Popović, L., & Lazić, V. (2011). Evaluation of edible film-forming ability of pumpkin oil cake; effect of pH and temperature. Food Hydrocolloids, 25(3), 470–476.

    Google Scholar 

  • Provesi, J. G., Amante, E. R. (2015). Chapter 9—Carotenoids in pumpkin and impact of processing treatments and storage, processing and impact on active components in food, Academic Press 71–80.

    Google Scholar 

  • Rajasree, R., Sibi, P., Francis, F., & William, H. (2016). Phytochemicals of Cucurbitaceae family-a review. International Journal of Pharmacognosy and Phytochemical Research, 8(1), 113–123.

    Google Scholar 

  • Rakcejeva, T., Galoburda, R., Cude, L., & Strautniece, E. (2011). Use of dried pumpkins in wheat bread production. Procedia Food Science, 1, 441–447.

    CAS  Google Scholar 

  • Ramachandran, P., Dhiman, A. K., & Attri, S. (2017). Extraction of pectin from ripe pumpkin (Cucurbita moschata Duch ex. Poir) using eco-friendly technique. Indian Journal of Ecology, 44(6), 685–689.

    Google Scholar 

  • Rathinavelu, A., Levy, A., Sivanesan, D., Murugan, D., Jornadal, J., Quinonez, Y., Jaffe, M., & Gossell-Williams, M. (2013). Cytotoxic effect of pumpkin (Curcurbita pepo) seed extracts in LNCaP prostate cancer cells is mediated through apoptosis. Current Topics in Nutraceuticals Research, 11(4), 137.

    Google Scholar 

  • Raut, M., Shinde, A., & Wakde, P. (2019). Effect of red pumpkin pulp on quality of buffalo milk. Basundi, 8(10), 34–35.

    CAS  Google Scholar 

  • Rezig, L., Chouaibi, M., Meddeb, W., Msaada, K., & Hamdi, S. (2019). Chemical composition and bioactive compounds of Cucurbitaceae seeds: Potential sources for new trends of plant oils. Process Safety and Environmental Protection, 127, 73–81.

    CAS  Google Scholar 

  • Rezig, L., Chouaibi, M., Msaada, K., & Hamdi, S. (2012). Chemical composition and profile characterization of pumpkin (Cucurbita maxima) seed oil. Industrial Crops and Products, 37, 82–87.

    CAS  Google Scholar 

  • Rezig, L., Chouaibi, M., Rm, O.-A., Gomez-Alonso, S., Salvador, M. D., Fregapane, G., & Hamdi, S. (2018). Cucurbita maxima pumpkin seed oil: From the chemical properties to the different extracting techniques. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(2), 663–669.

    CAS  Google Scholar 

  • Richter, D., Abarzua, S., Chrobak, M., Vrekoussis, T., Weissenbacher, T., Kuhn, C., Schulze, S., Kupka, M. S., Friese, K., & Briese, V. (2013). Effects of phytoestrogen extracts isolated from pumpkin seeds on estradiol production and ER/PR expression in breast cancer and trophoblast tumor cells. Nutrition and Cancer, 65(5), 739–745.

    CAS  PubMed  Google Scholar 

  • Rico, X., Gullón, B., Alonso, J. L., & Yáñez, R. (2020). Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products: An overview. Food Research International, 132, 109086.

    CAS  PubMed  Google Scholar 

  • Rosano, G., Vitale, C., Marazzi, G., & Volterrani, M. (2007). Menopause and cardiovascular disease: The evidence. Climacteric, 10(sup1), 19–24.

    CAS  PubMed  Google Scholar 

  • Roy, S. & Datta, S. (2015). A comprehensive review of the versatile as a valuable natural medicine. International Journal of Current Research 7 (8), 19355–19361.

    Google Scholar 

  • Saavedra, M., Aires, A., Dias, C., Almeida, J., De Vasconcelos, M., Santos, P., & Rosa, E. (2015). Evaluation of the potential of squash pumpkin by-products (seeds and shell) as sources of antioxidant and bioactive compounds. Journal of Food Science and Technology, 52(2), 1008–1015.

    CAS  PubMed  Google Scholar 

  • Salami, A., Asefi, N., Kenari, R. E., & Gharekhani, M. (2020). Addition of pumpkin peel extract obtained by supercritical fluid and subcritical water as an effective strategy to retard canola oil oxidation. Journal of Food Measurement and Characterization, 14, 2433–2442.

    Google Scholar 

  • Salgın, U., & Korkmaz, H. (2011). A green separation process for recovery of healthy oil from pumpkin seed. The Journal of Supercritical Fluids, 58(2), 239–248.

    Google Scholar 

  • Sandra, N., Desanka, R., Dubravka, S., Dubravka, S., Željko, M., & Martina, B. (2006). Chemical characteristics of oils from naked and husk seeds of Cucurbita pepo L. European Journal of Lipid Science and Technology, 108, 936–943.

    Google Scholar 

  • Sarkar, S., & Guha, D. (2008). Effect of ripe fruit pulp extract of Cucurbita pepo Linn. In aspirin induced gastric and duodenal ulcer in rats. Indian Journal of Experimental Biology, 46(9), 639–645.

    CAS  PubMed  Google Scholar 

  • Schinas, P., Karavalakis, G., Davaris, C., Anastopoulos, G., Karonis, D., Zannikos, F., Stournas, S., & Lois, E. (2009). Pumpkin (Cucurbita pepo L.) seed oil as an alternative feedstock for the production of biodiesel in Greece. Biomass and Bioenergy, 33(1), 44–49.

    CAS  Google Scholar 

  • Siano, F., Straccia, M. C., Paolucci, M., Fasulo, G., Boscaino, F., & Volpe, M. G. (2015). Physico-chemical properties and fatty acid composition of pomegranate, cherry and pumpkin seed oils. Journal of the Science of Food and Agriculture, 96(5), 1730–1735.

    PubMed  Google Scholar 

  • Sicilia, T., Niemeyer, H. B., Honig, D. M., & Metzler, M. (2003). Identification and stereochemical characterization of lignans in flaxseed and pumpkin seeds. Journal of Agricultural and Food Chemistry, 51(5), 1181–1188.

    CAS  PubMed  Google Scholar 

  • Song, J., Yang, Q., Huang, W., Xiao, Y., Li, D., & Liu, C. (2018). Optimization of trans lutein from pumpkin (Cucurbita moschata) peel by ultrasound-assisted extraction. Food and Bioproducts Processing, 107, 104–112.

    CAS  Google Scholar 

  • Sood, A., Kaur, P., Gupta, R., 2012. Phytochemical screening and antimicrobial assay of various seeds extract of Cucurbitaceae family. Journal of Applied Biology and Pharmaceutical Technology 3(3):401-409.

    Google Scholar 

  • Staichok, A. C. B., Mendonça, K. R. B., dos Santos, P. G. A., Garcia, L. G. C., & Damiani, C. (2016). Pumpkin peel flour (Cucurbita máxima L.)-characterization and technological applicability. Journal of Food Nutrition Research, 4, 327–333.

    CAS  Google Scholar 

  • Stevenson, D. G., Eller, F. J., Wang, L., Jane, J.-L., Wang, T., & Inglett, G. E. (2007). Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars. Journal of Agricultural and Food Chemistry, 55(10), 4005–4013.

    CAS  PubMed  Google Scholar 

  • Suphakarn, V. S., Yarnnon, C., & Ngunboonsri, P. (1987). The effect of pumpkin seeds on oxalcrystalluria and urinary compositions of children in hyperendemic area. American Journal of Clinical Nutrition, 45, 115–121.

    CAS  Google Scholar 

  • Teugwa, C. M., Boudjeko, T., Tchinda, B. T., Mejiato, P. C., & Zofou, D. (2013). Anti-hyperglycaemic globulins from selected Cucurbitaceae seeds used as antidiabetic medicinal plants in Africa. BMC Complementary and Alternative Medicine, 13(1), 63.

    PubMed  PubMed Central  Google Scholar 

  • Tsaknis, J., Lalas, S., & Lazos, E. S. (1997). Characterization of crude and purified pumpkin seed oil. Grasas y Aceites, 48(5), 267–272.

    CAS  Google Scholar 

  • Türkmen, Ö., Özcan, M. M., Seymen, M., Paksoy, M., Uslu, N., & Fidan, S. (2017). Physico-chemical properties and fatty acid compositions of some edible pumpkin seed genotypes and oils. Journal of Agroalimentary Processes and Technologies, 23(4), 229–235.

    Google Scholar 

  • Wang, L., Liu, F., Wang, A., Yu, Z., Xu, Y., & Yang, Y. (2017). Purification, characterization and bioactivity determination of a novel polysaccharide from pumpkin (Cucurbita moschata) seeds. Food Hydrocolloids, 66, 357–364.

    CAS  Google Scholar 

  • Wang, H., & Ng, T. (2003). Isolation of cucurmoschin, a novel antifungal peptide abundant in arginine, glutamate and glycine residues from black pumpkin seeds. Peptides, 24(7), 969–972.

    CAS  PubMed  Google Scholar 

  • Wang, S.-Y., Huang, W.-C., Liu, C.-C., Wang, M.-F., Ho, C.-S., Huang, W.-P., Hou, C.-C., Chuang, H.-L., & Huang, C.-C. (2012). Pumpkin (Cucurbita moschata) fruit extract improves physical fatigue and exercise performance in mice. Molecules, 17(10), 11864–11876.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzl, T., Prettner, E., Schweiger, K., & Wagner, F. S. (2002). An improved method to discover adulteration of Styrian pumpkin seed oil. Journal of Biochemical and Biophysical Methods, 53(1-3), 193–202.

    CAS  PubMed  Google Scholar 

  • Xanthopoulou, M. N., Nomikos, T., Fragopoulou, E., & Antonopoulou, S. (2009). Antioxidant and lipoxygenase inhibitory activities of pumpkin seed extracts. Food Research International, 42(5-6), 641–646.

    CAS  Google Scholar 

  • Xia, H. C., Feng, L., Zhen, L., & Zhang, Z. C. (2003). Purification and characterization of Moschatin, a novel type I ribosome-inactivating protein from the mature seeds of pumpkin (Cucurbita moschata), and preparation of its immunotoxin against human melanoma cells. Cell Research, 13(5), 369–374.

    CAS  PubMed  Google Scholar 

  • Yadav, M., Jain, S., Tomar, R., Prasad, G., & Yadav, H. (2010). Medicinal and biological potential of pumpkin: An updated review. Nutrition Research Reviews, 23(2), 184–190.

    CAS  PubMed  Google Scholar 

  • Yasir, M., Sultana, B., Nigam, P. S., & Owusu-Apenten, R. (2016). Antioxidant and genoprotective activity of selected cucurbitaceae seed extracts and LC-ESIMS/MS identification of phenolic components. Food Chemistry, 199, 307–313.

    CAS  PubMed  Google Scholar 

  • Yesmin, M., Azad, M., Kamruzzaman, M., & Uddin, M. (2020). Bioethanol production from corn, pumpkin, and carrot of Bangladesh as renewable source using yeast saccharomyces cerevisiae. Acta Chemica Malaysia, 4(2), 45–54.

    Google Scholar 

  • Yoshinari, O., Udani, J., Moriyama, H., Shiojima, Y., & Chien, X. (2015). The efficacy and safety of a proprietary onion-pumpkin extract (OPtain120) on blood pressure: An open-label study. Functional Foods in Health and Disease, 5(6), 224–242.

    Google Scholar 

  • Zaineddin, A. K., Buck, K., Vrieling, A., Heinz, J., Flesch-Janys, D., Linseisen, J., & Chang-Claude, J. (2012). The association between dietary lignans, phytoestrogen-rich foods, and fiber intake and postmenopausal breast cancer risk: A German case-control study. Nutrition and Cancer, 64(5), 652–665.

    CAS  PubMed  Google Scholar 

  • Zeb, A., & Ahmad, S. (2017). Changes in acylglycerols composition, quality characteristics and in vivo effects of dietary pumpkin seed oil upon thermal oxidation. Frontiers in Chemistry, 5, 55.

    PubMed  PubMed Central  Google Scholar 

  • Zhu, H. Y., Chen, G. T., Meng, G. L., & Xu, J. L. (2015). Characterization of pumpkin polysaccharides and protective effects on streptozotocin-damaged islet cells. Chinese Journal of Natural Medicines, 13(3), 199–207.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Essam Abdel-Sattar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ezzat, S.M., Adel, R., Abdel-Sattar, E. (2022). Pumpkin Bio-Wastes as Source of Functional Ingredients. In: Ramadan, M.F., Farag, M.A. (eds) Mediterranean Fruits Bio-wastes. Springer, Cham. https://doi.org/10.1007/978-3-030-84436-3_29

Download citation

Publish with us

Policies and ethics