Skip to main content

Vehicular Intelligence System: Time-Based Vehicle Next Location Prediction in Software-Defined Internet of Vehicles (SDN-IOV) for the Smart Cities

  • Chapter
  • First Online:
Intelligence of Things: AI-IoT Based Critical-Applications and Innovations

Abstract

Background Theory: The development of traditional Vehicular Ad-Hoc Networks (VANETs) into the Internet of Vehicles (IOV) is inspired by the modern era of the Internet of Things (IoT). The smart city technologies can offer suitable services based on the citizens’ demands. The Internet of Things (IoT) technology, that allows a large number of devices to communicate with one another, is one of the key enablers in Smart Cities (SC).

Objective: This chapter is an outline of SC and the next position’s prediction using software-defined IoT-based VANETs, known as IOV networks. This chapter is designed in three-phase: (1) Smart Cities (SC) deployment, (2) improved data forwarding, and (3) location prediction of vehicle. The vehicular intelligence system considers road conditions, traffic density, current position, and cars’ speed.

Methodology: The proposed Artificial Intelligence (AI) Model helps the Software-Defined Controller (SDN), centralized controller to calculate and predict future status inside and outside the area. To evaluate the proposed system, the SUMO simulator with Open Street map (OSM) is taken into account, and the outcome shows the significance of vehicle location prediction for VANET.

Result: The mathematical examination and simulation results on Network Simulator 3 and SUMO shows a higher packet delivery ratio (PDR) as compared to the existing protocol. The proposed protocol ERS-SDN-IOV shows a less delivery transmission time compared to the AODV, GPSR, and SDGR. It is having the 95% delivery ratio and 50% lesser transmission time as compare to mention existing protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbas, M. T., Muhammad, A., & Song, W. C. (2020). SD-IOV: SDN enabled routing for internet of vehicles in road-aware approach. Journal of Ambient Intelligence and Humanized Computing, 11(3), 1265–1280.

    Article  Google Scholar 

  2. Saleet, H., Langar, R., Naik, K., Boutaba, R., Nayak, A., & Goel, N. (2011). Intersection-based geographical routing protocol for VANETs: A proposal and analysis. IEEE Transactions on Vehicular Technology, 60(9), 4560–4574.

    Article  Google Scholar 

  3. Abbasi, I. A., Nazir, B., Abbasi, A., Bilal, S. M., & Madani, S. A. (2014). A traffic flow-oriented routing protocol for VANETs. EURASIP Journal on Wireless Communications and Networking, 2014(1), 1–14.

    Article  Google Scholar 

  4. Salkuyeh, M. A., & Abolhassani, B. (2016). An adaptive multipath geographic routing for video transmission in urban VANETs. IEEE Transactions on Intelligent Transportation Systems, 17(10), 2822–2831.

    Article  Google Scholar 

  5. Salkuyeh, M. A., & Abolhassani, B. (2016). An adaptive multipath geographic routing for video transmission in urban VANETs. IEEE Transactions on Intelligent Transportation Systems, 17(10), 2822–2831.

    Article  Google Scholar 

  6. Yaqoob, S., Ullah, A., Akbar, M., Imran, M., & Shoaib, M. (2019). Congestion avoidance through fog computing in internet of vehicles. Journal of Ambient Intelligence and Humanized Computing, 10(10), 3863–3877.

    Article  Google Scholar 

  7. Hussain, N, & Rani, P. (2020). Comparative studied based on attack resilient and efficient protocol with intrusion detection system based on deep neural network for vehicular system security. Distributed Artificial Intelligence: A Modern Approach (p. 217).

    Google Scholar 

  8. Hussain, N., Singh, A., & Shukla, P. K. (2016). In depth analysis of attacks & countermeasures in vehicular ad hoc network. International Journal of Software Engineering and Its Applications, 10(12), 329–368.

    Article  Google Scholar 

  9. Weng, J. S., Weng, J., Zhang, Y., Luo, W., & Lan, W. (2018). BENBI: Scalable and dynamic access control on the northbound interface of SDN-based VANET. IEEE Transactions on Vehicular Technology, 68(1), 822–831.

    Article  Google Scholar 

  10. Zhu, M., Cao, J., Pang, D., He, Z., & Xu, M. (2015, August). SDN-based routing for efficient message propagation in VANET. In International conference on wireless algorithms, systems, and applications (pp. 788–797). Springer.

    Chapter  Google Scholar 

  11. Bhatia, J., Dave, R., Bhayani, H., Tanwar, S., & Nayyar, A. (2020). SDN-based real-time urban traffic analysis in VANET environment. Computer Communications, 149, 162–175.

    Article  Google Scholar 

  12. Shafiq, H., Rehman, R. A., & Kim, B. S. (2018). Services and security threats in SDN based VANETs: A survey. Wireless Communications and Mobile Computing, 2018, 8631851.

    Article  Google Scholar 

  13. Kai, K., Cong, W., & Tao, L. (2016). Fog computing for vehicular ad-hoc networks: paradigms, scenarios, and issues. The journal of China Universities of Posts and Telecommunications, 23(2), 56–96.

    Article  Google Scholar 

  14. Pereira, J., Ricardo, L., Luís, M., Senna, C., & Sargento, S. (2019). Assessing the reliability of fog computing for smart mobility applications in VANETs. Future Generation Computer Systems, 94, 317–332.

    Article  Google Scholar 

  15. Mukherjee, M., Shu, L., & Wang, D. (2018). Survey of fog computing: Fundamental, network applications, and research challenges. IEEE Communications Surveys & Tutorials, 20(3), 1826–1857.

    Article  Google Scholar 

  16. Bylykbashi, K., Qafzezi, E., Ikeda, M., Matsuo, K., & Barolli, L. (2020). Fuzzy-based driver monitoring system (FDMS): Implementation of two intelligent FDMSs and a testbed for safe driving in VANETs. Future Generation Computer Systems, 105, 665–674.

    Article  Google Scholar 

  17. Garg, S., Singh, A., Kaur, K., Aujla, G. S., Batra, S., Kumar, N., & Obaidat, M. S. (2019). Edge computing-based security framework for big data analytics in VANETs. IEEE Network, 33(2), 72–81.

    Article  Google Scholar 

  18. Anwer, M. S., & Guy, C. (2014). A survey of VANET technologies. Journal of Emerging Trends in Computing and Information Sciences, 5(9), 661–671.

    Google Scholar 

  19. Truong, N.B., Lee, G.M. and Ghamri-Doudane, Y., 2015, May. Software defined networking-based vehicular adhoc network with fog computing. In 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM) (pp. 1202-1207). IEEE.

    Google Scholar 

  20. Ydenberg, A., Heir, N., & Gill, B. (2018, January). Security, SDN, and VANET technology of driver-less cars. In 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC) (pp. 313–316). IEEE.

    Google Scholar 

  21. Jaballah, W. B., Conti, M., & Lal, C. (2020). Security and design requirements for software-defined VANETs. Computer Networks, 169, 107099.

    Article  Google Scholar 

  22. Arif, M., Wang, G., Geman, O., Balas, V. E., Tao, P., Brezulianu, A., & Chen, J. (2020). Sdn-based vanets, security attacks, applications, and challenges. Applied Sciences, 10(9), 3217.

    Article  Google Scholar 

  23. Li, T., Chen, J., & Fu, H. (2019, April). Application scenarios based on SDN: an overview. In Journal of Physics: Conference Series (Vol. 1187, No. 5, p. 052067). IOP Publishing.

    Google Scholar 

  24. Abuashour, A., & Kadoch, M. (2017, August). An intersection dynamic VANET routing protocol for a grid scenario. In 2017 IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud) (pp. 25–31). IEEE.

    Google Scholar 

  25. Ku, I., Lu, Y., Gerla, M., Gomes, R. L., Ongaro, F., & Cerqueira, E. (2014, June). Towards software-defined VANET: Architecture and services. In 2014 13th annual Mediterranean ad hoc networking workshop (MED-HOC-NET) (pp. 103–110). IEEE.

    Google Scholar 

  26. Ji, X., Yu, H., Fan, G., & Fu, W. (2016, December). SDGR: An SDN-based geographic routing protocol for VANET. In 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (pp. 276–281). IEEE.

    Google Scholar 

  27. Zhu, M., Cao, J., Pang, D., He, Z., & Xu, M. (2015, August). SDN-based routing for efficient message propagation in VANET. In International conference on wireless algorithms, systems, and applications (pp. 788–797). Springer.

    Chapter  Google Scholar 

  28. Berde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M., Koide, T., Lantz, B., O’Connor, B., Snow, G., & Parulkar, G. (2014, August). ONOS: towards an open, distributed SDN OS. In Proceedings of the third workshop on Hot topics in software defined networking (pp. 1–6).

    Google Scholar 

  29. Venkatramana, D. K. N., Srikantaiah, S. B., & Moodabidri, J. (2017). SCGRP: SDN-enabled connectivity-aware geographical routing protocol of VANETs for urban environment. IET Networks, 6(5), 102–111.

    Article  Google Scholar 

  30. Jibran, M. A., Abbas, M. T., Rafiq, A., & Song, W. C. (2020). Position prediction for routing in software defined internet of vehicles [J]. Journal of Communications, 2020, 157–163.

    Article  Google Scholar 

  31. Alvear, O., Calafate, C. T., Cano, J. C., & Manzoni, P. (2018). Crowdsensing in smart cities: Overview, platforms, and environment sensing issues. Sensors, 18(2), 460.

    Article  Google Scholar 

  32. Bisio, I., Lavagetto, F., Marchese, M., & Sciarrone, A. (2015). Smartphone-centric ambient assisted living platform for patients suffering from co-morbidities monitoring. IEEE Communications Magazine, 53(1), 34–41.

    Article  Google Scholar 

  33. Shafik, W., Matinkhah, S. M., & Ghasemzadeh, M. (2020). Internet of things-based energy management, challenges, and solutions in smart cities. Journal of Communications Technology, Electronics and Computer Science, 27, 1–11.

    Google Scholar 

  34. Ang, L. M., Seng, K. P., Ijemaru, G. K., & Zungeru, A. M. (2018). Deployment of IOV for smart cities: applications, architecture, and challenges. IEEE Access, 7, 6473–6492.

    Article  Google Scholar 

  35. Ejaz, W., & Anpalagan, A. (2019). Internet of Things enabled electric vehicles in smart cities. In Internet of Things for smart cities (pp. 39–46). Springer.

    Chapter  Google Scholar 

  36. Shah, S. S., Ali, M., Malik, A. W., Khan, M. A., & Ravana, S. D. (2019). vFog: A vehicle-assisted computing framework for delay-sensitive applications in smart cities. IEEE Access, 7, 34900–34909.

    Article  Google Scholar 

  37. Kang, J., Yu, R., Huang, X., & Zhang, Y. (2017). Privacy-preserved pseudonym scheme for fog computing supported internet of vehicles. IEEE Transactions on Intelligent Transportation Systems, 19(8), 2627–2637.

    Article  Google Scholar 

  38. Gil, D., Ferrández, A., Mora-Mora, H., & Peral, J. (2016). Internet of things: A review of surveys based on context aware intelligent services. Sensors, 16(7), 1069.

    Article  Google Scholar 

  39. He, X., Wang, K., Huang, H., & Liu, B. (2018). QoE-driven big data architecture for smart city. IEEE Communications Magazine, 56(2), 88–93.

    Article  Google Scholar 

  40. Li, R., Zhao, Z., Zhou, X., Ding, G., Chen, Y., Wang, Z., & Zhang, H. (2017). Intelligent 5G: When cellular networks meet artificial intelligence. IEEE Wireless Communications, 24(5), 175–183.

    Article  Google Scholar 

  41. Longo, A., Zappatore, M., Bochicchio, M., & Navathe, S. B. (2017). Crowd-sourced data collection for urban monitoring via mobile sensors. ACM Transactions on Internet Technology (TOIT), 18(1), 1–21.

    Article  Google Scholar 

  42. Corradi, A., Foschini, L., Gioia, L., & Ianniello, R. (2016, December). Leveraging communities to boost participation and data collection in mobile crowd sensing. In 2016 IEEE Global Communications Conference (GLOBECOM) (pp. 1–6). IEEE.

    Google Scholar 

  43. Panichpapiboon, S., & Leakkaw, P. (2017). Traffic density estimation: A mobile sensing approach. IEEE Communications Magazine, 55(12), 126–131.

    Article  Google Scholar 

  44. Abdellah, A. R., Muthanna, A., & Koucheryavy, A. (2019). Robust estimation of VANET performance-based robust neural networks learning. In Internet of Things, smart spaces, and next generation networks and systems (pp. 402–414). Springer.

    Google Scholar 

  45. Ovasapyan, T. D., Moskvin, D. A., & Kalinin, M. O. (2018). Using neural networks to detect internal intruders in VANETs. Automatic Control and Computer Sciences, 52(8), 954–958.

    Article  Google Scholar 

  46. https://www.nsnam.org/

  47. https://sumo.dlr.de/docs/Tutorials/Trace_File_Generation.html

  48. https://opennetworking.org/onos/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rani, P., Hussain, N., Khan, R.A.H., Sharma, Y., Shukla, P.K. (2021). Vehicular Intelligence System: Time-Based Vehicle Next Location Prediction in Software-Defined Internet of Vehicles (SDN-IOV) for the Smart Cities. In: Al-Turjman, F., Nayyar, A., Devi, A., Shukla, P.K. (eds) Intelligence of Things: AI-IoT Based Critical-Applications and Innovations . Springer, Cham. https://doi.org/10.1007/978-3-030-82800-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82800-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82799-1

  • Online ISBN: 978-3-030-82800-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics