Skip to main content

AlphaGo, Locked Strategies, and Eco-cognitive Openness

  • Chapter
  • First Online:
Eco-Cognitive Computationalism

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 43))

Abstract

In 2015, Google DeepMind’s program AlphaGo (able to perform the famous Go game) beat Fan Hui, the European Go champion and a 2 dan (out of 9 dan) professional, five times out of five with no handicap on a full size 19 \(\times \) 19 board.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The AI research on these topics also favored the formation, in two philosophy departments, of the following facilities: the Computational Epistemology Laboratory (http://cogsci.uwaterloo.ca/) headed by P. Thagard at the University of Waterloo, Canada and the Computational Philosophy Laboratory (http://www-3.unipv.it/webphilos_lab/wordpress/), headed by myself at the University of Pavia, Italy, both devoted to research into computer science, cognitive science, and related areas of philosophy.

  2. 2.

    Classical volumes where the reader can find the illustration of the most important research and of some historical machine discovery programs are Langley et al. (1987) and Shrager and Langley (1990). Cf. also Zytkow (1992)  (Proceedings of MD-92 Workshop on “Machine Discovery”), and Colton (1999) (Proceedings  of AISB’99).

  3. 3.

    The proceedings are still available online https://www.researchgate.net/publication/235198935_Working_Notes_of_the_1990_Spring_Symposium_on_Automated_Abduction..

  4. 4.

    A review of the classical AI approaches to abduction (mainly based on logic programming) is given by Paul (2000) and (Bylander et al. 1991; Reiter 1987; Kleer and Williams 1987; Reggia et al. 1983) (set covering approaches). Other classical programs regarding discovery in science are illustrated by Valdés-Pérez (1999): MECHEM (reaction mechanisms in chemistry (Zeigarnik et al. 1997)), ARROSMITH (intertwining between drugs or dietary aspects and diseases in medicine (Swanson and Smalheiser 1997)), GRAFFITI (generation of conjectures in graph theory and other mathematical areas (Fajtlowicz 1988)), MDP/KINSHIP (determination of classes within a classification in linguistics (Pericliev et al. 1998)).

  5. 5.

    A rich survey of the intertwining between computation and scientific explanation and abductive discovery is illustrated in Thagard and Litt (2008).

  6. 6.

    A simple neural network has been used to build the computational program ECHO (Explanatory Coherence) regarding that part of abduction that concerns the process of hypothesis evaluation (Thagard 1989, 1992).

  7. 7.

    A survey about the importance of models in abductive cognition is illustrated in Figueroa (2012).

  8. 8.

    The need of a plurality of representations was already clear at the time of classical AI formalisms, when I was collaborating with AI researchers to implement a Knowledge-Based System (KBS) able to develop medical abductive reasoning (Ramoni et al. 1992).

  9. 9.

    AlphaGo Zero is a version of DeepMinds Go software AlphaGo; the recent AlphaZero, that learns from games autonomously played, further enriches AlphaGo Zero, cf. https://en.wikipedia.org/wiki/AlphaZero.

  10. 10.

    The prepredicative world is not yet characterized by predications, values, empirical manipulations, and techniques of measurement as instead the Husserl’s prescientific world is.

  11. 11.

    On the role of adumbrations in the genesis of ideal space and on their abductive and nonmonotonic character cf. Sect. 3.2.3. An interesting article   (Overgaard and Grünbaum 2007) deals with the relationship between perceptual intentionality, agency, and bodily movement and acknowledges the abductive role of adumbrations. In the remaining part of this section I will try to clarify their meaning.

  12. 12.

    Cf. also  (Husserl 1931, Sect. 40, p. 129) [originally published in 1913].

  13. 13.

    Husserl uses the terms “kinestetic sensations” and “kinesthetic sequences” to denote the subjective awareness of position and movement in order to distinguish it from the position and movement of perceived objects in space. On some results of neuroscience that corroborate and improve several phenomenological intuitions cf. (Pachoud 1999, pp. 211–216),   Barbaras (1999), and Petit (1999).

  14. 14.

    The ego itself is only constituted thanks to the capabilities of movement and action.

  15. 15.

    On Grush’s approach cf. the detailed discussion illustrated in (Clark (2008, chapter seven)) in the framework of the theory of the extended mind; a treatment of current cognitive theories, such as the sensorimotor theory of perception, which implicitly furnish a scientific account of the phenomenological concept of anticipation, is given in chapter eight of the same book. A detailed treatment of recent neuroscience achievements which confirms the abductive character of perception is given in the article “Vision, thinking, and model-based inferences” (Raftopoulos 2017), recently published in the Handbook of Model-Based Science (Magnani and Bertolotti 2017).

  16. 16.

    Cf. Wikipedia, entry Go (game) https://en.wikipedia.org/wiki/Go_(game).

  17. 17.

    An expressive adjective still used by Husserl (1978). Translated by D. Carr and originally published in The Crisis of European Sciences and Transcendental Phenomenology .

  18. 18.

    This expression, I have extendedly used in Magnani (2001), is derived from Hutchins,  who introduced the expression “mediating structure”, which regards external tools and props that can be constructed to cognitively enhance the activity of navigating. Written texts are trivial examples of a cognitive “mediating structure” with clear cognitive purposes, so mathematical symbols, simulations, and diagrams, which often become “epistemic mediators”, because related to the production of scientific results: “Language, cultural knowledge, mental models, arithmetic procedures, and rules of logic are all mediating structures too. So are traffic lights, supermarkets layouts, and the contexts we arrange for one another’s behavior. Mediating structures can be embodied in artifacts, in ideas, in systems of social interactions [...]” (Hutchins 1995 pp. 290–291)  that function as an enormous new source of information and knowledge.

  19. 19.

    Cf. Wikipedia entry Go (game) https://en.wikipedia.org/wiki/Go_(game).

  20. 20.

    I have furnished more cognitive and technical details to explain this result in (Magnani 2016).

  21. 21.

    Of course, many of the strategies of a good player are already mentally present thanks to the experience of several previous games.

  22. 22.

    Many interesting examples can be found in the recent (Magnani and Bertolotti 2017).

  23. 23.

    It is necessary to select from pre-stored diagnostic hypotheses.

  24. 24.

    Obviously, for example, new rules and new boards can be proposed, so realizing new types of game, but this chance does not jeopardize my argumentation.

  25. 25.

    Some notes on the area of the so-called automated scientific discovery in AI cf. (Magnani (2009, Chap. 2, Sect. 2.7 “Automatic Abductive Scientists”)).

  26. 26.

    Date of access August 19th, 2021.

  27. 27.

    Relatively recent bibliographic references can be found in my book (Magnani 2007).

  28. 28.

    On this problem and other negative epistemological use of computational programs, cf. the recent (Calude and Longo 2017).

References

  • Arfini, S., Magnani, L.: An eco-cognitive model of ignorance immunization. In: Magnani, L., Li, P., Park, W. (eds.) Philosophy and Cognitive Science II. Western & Eastern Studies, vol. 20, pp. 59–75. Springer, Switzerland (2015)

    Google Scholar 

  • Barbaras, R.: The movement of the living as the originary foundation of perceptual intentionality. In: Petitot, J., Varela, F.J., Pachoud, B., Roy, J.-M. (eds.) Naturalizing Phenomenology, pp. 525–538. Stanford University Press, Stanford, CA (1999)

    Google Scholar 

  • Boden, M.: The Creative Mind: Myths and Mechanisms. Basic Books, New York (1992)

    Google Scholar 

  • Boneh, D., Dunworth, C., Lipton, R.J., Sgall, J.: On the computational power of DNA, Discrete Applied Mathematics. Comput. Mol. Biol. 71, 79–94 (1996)

    MATH  Google Scholar 

  • Bruza, P.D., Cole, R.J., Song, D., Bari, Z.: Towards operational abduction from a cognitive perspective. Logic J. IGPL 14(2), 161–179 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Bruza, P.D., Kitto, K., Ramm, B., Sitbon, L., Blomberg, S., Song, D.: Quantum-like non-separability of concept combinations, emergent associates and abduction. Logic J. IGPL 20(2), 445–457 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Bylander, T., Allemang, D., Tanner, M.C., Josephson, J.R.: The computational complexity of abduction. Artif. Intell. 49, 25–60 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Calude, C.S., Longo, G.: The deluge of spurious correlations in big data. Found. Sci. 22(3), 595–612 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Clark, A.: Supersizing the Mind. Embodiment, Action, and Cognitive Extension. Oxford University Press, Oxford/New York (2008)

    Google Scholar 

  • Coelho, H., Thompsen Primo, T.: Exploratory apprenticeship in the digital age with AI tools. Prog. Artif. Intell. 1(6), 17–25 (2017)

    Article  Google Scholar 

  • Colton, S. (ed.): AI and Scientific Creativity. Proceedings of the AISB99 Symposium on Scientific Creativity, Society for the Study of Artificial Intelligence and Simulation of Behaviour. University of Edinburgh, Edinburgh, Edinburgh College of Art and Division of Informatics (1999)

    Google Scholar 

  • Corruble, V., Ganascia, J.-G.: Induction and the discovery of the causes of scurvy: A computational reconstruction. Artif. Intell. 91, 205–223 (1997)

    Article  MATH  Google Scholar 

  • Davies, J.: Tesuji. Elementary Go Series. 3. Tokyo: Kiseido Publishing Company (1995)

    Google Scholar 

  • Davies, J., Goel, A.K.: A Computational Theory of Visual Analogical Transfer. Technical Report, Georgia Institute of Technology, Atlanta, GA (2000)

    Google Scholar 

  • Davies, J., Goel, A.K., Yaner, P.W.: Proteus: Visual analogy in problem solving. Knowl.-Based Syst. 21(7), 636–654 (2008)

    Article  Google Scholar 

  • de Kleer, J., Williams, B.: Diagnosing multiple faults. Artif. Intell. 32, 97–130 (1987)

    Article  MATH  Google Scholar 

  • Desmurget, M., Grafton, S.: Forward modeling allows feedback control for fast reaching movements. Trends Cognit. Sci. 4, 423–431 (2002)

    Article  Google Scholar 

  • Fajtlowicz, S.: On conjectures of Graffiti. Discrete Math. 72, 113–118 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Falkenhainer, B.C.: A unified approach to explanation and theory formation. In: Shrager, J., Langley, P. (eds.) Computational Models of Scientific Discovery and Theory Formation, pp. 157–196. Morgan Kaufmann, San Mateo, CA. (1990)

    Google Scholar 

  • Feyerabend, P.: Against Method. Verso, London-New York (1975)

    Google Scholar 

  • Figueroa, A.R.: Inferencia abductiva basada en modelos. Una relación entre lógica y cognitión. Crítica. Revista Hispanoamericana de Filosofía 43(129), 3–29 (2012)

    Google Scholar 

  • Gärdenfors, P.: Conceptual Spaces: The Geometry of Thought. The MIT Press, Cambridge (2000)

    Book  Google Scholar 

  • Gigerenzer, G., Brighton, H.: Homo heuristicus: Why biased minds make better inferences. Topics Cognit. Sci. 1, 107–143 (2009)

    Article  Google Scholar 

  • Gigerenzer, G., Selten, R.: Bounded Rationality. The Adaptive Toolbox. The MIT Press, Cambridge, MA (2002)

    Book  Google Scholar 

  • Glymour, C., Scheines, R., Spirtes, P., Kelly, K.: Discovering Causal Structure. Academic Press, San Diego, CA. (1987)

    MATH  Google Scholar 

  • Gopnik, A., Meltzoff, A.: Words, Thoughts and Theories (Learning, Development, and Conceptual Change). The MIT Press, Cambridge, MA (1997)

    Google Scholar 

  • Grush, R.: Agency, emulation and other minds. Cognit. Semiotics 0, 49–67 (2007)

    Google Scholar 

  • Grush, R.: Further explorations of the empirical and theoretical aspects of the emulation theory. Behavioral and Brain Sciences 27, 425–435 (2004a). Author’s Response to Open Peer Commentary to R. Grush, The emulation theory of representation: Motor control, imagery, and perception

    Google Scholar 

  • Grush, R.: The emulation theory of representation: motor control, imagery, and perception. Behav. Brain Sci. 27, 377–442 (2004b)

    Article  Google Scholar 

  • Holland, J.H.: Hidden Order. Addison-Wesley, Reading, MA (1995)

    Google Scholar 

  • Holland, J.H.: Emergence: From Chaos to Order. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  • Husserl, E.: Ding und Raum: Vorlesungen (1907). Husserliana 16, edited by U. Claesges. Nijhoff, The Hague (1973)

    Google Scholar 

  • Husserl, E.: Ideas. General Introduction to Pure Phenomenology [First book, 1913]. Translated by W. R. Boyce Gibson. London: Northwestern University Press (1931)

    Google Scholar 

  • Husserl, E.: The Crisis of European Sciences and Transcendental Phenomenology [1954]. Translated by. D. Carr. George Allen & Unwin and Humanities Press, London (1970)

    Google Scholar 

  • Husserl, E.: The Origin of Geometry (1939). In: Derrida, J. (ed.) Edmund Husserl’s "The Origin of Geometry", pp. 157–180 (Translated by D. Carr and originally published in Husserl, 1970, pp. 353–378). Nicolas Hays, Stony Brooks, NY (1978)

    Google Scholar 

  • Hutchins, E.: Cognition in the Wild. The MIT Press, Cambridge, MA (1995)

    Google Scholar 

  • Klahr, D., Dunbar, K.: Dual space search during scientific reasoning. Cognit. Sci. 12, 1–48 (1988)

    Article  Google Scholar 

  • Kulkarni, D., Simon, H.A.: The process of scientific discovery: The strategy of experimentation. Cognit. Sci. 12, 139–176 (1988)

    Article  Google Scholar 

  • Langley, C., Klahr, D.: A 4-space model of scientific discovery. AAAI Symposium Systematic Methods of Scientific Discovery, Technical Report SS-95-03. AAAI Press, Menlo Park, CA (1995)

    Google Scholar 

  • Langley, P., Simon, H.A., Bradshaw, G., Zytkow, J.: Scientific Discovery. Computational Explorations of the Creative Processes. The MIT Press, Cambridge, MA (1987)

    Book  Google Scholar 

  • Lenat, R.K.: Understanding diagrammatic demonstrations. In: Ram, A., Eiselt, K. (eds.) Proceedings of the 16th Annual Conference of the Cognitive Science Society, pp. 572–576. Erlbaum, Hillsdale, Paris (1994)

    Google Scholar 

  • Lenat, D.: Discovery in mathematics as heuristic search. In: Davis, R., Lenat, D. (eds.) Knowledge-Based Systems in Artificial Intelligence. McGraw Hill, New York (1982)

    MATH  Google Scholar 

  • Lindsay, R.K.: Using spatial semantics to discover and verify diagrammatic demonstrations of geometric propositions. In: O’Nuallian, S. (ed.) Spatial Cognition. Proceedings of the 16th Annual Conference of the Cognitive Science Society, pp. 199–212. John Benjamins, Amsterdam (2000b)

    Google Scholar 

  • Lindsay, R.K.: Using diagrams to understand geometry. Comput. Intell. 9(4), 343–345 (1998)

    Article  Google Scholar 

  • Lindsay, R.K.: Playing with diagrams. In: Anderson, M., Cheng, P., Haarslev, V. (eds.) Diagrams 2000, pp. 300–313. Springer, Berlin (2000a)

    MATH  Google Scholar 

  • Lindsay, R.K., Buchanan, B., Feingenbaum, E., Lederberg, J.: Applications of Artificial Intelligence for Organic Chemistry: The Dendral Project. McGraw Hill, New York (1980)

    Google Scholar 

  • Magnani, L.: Abduction, Reason, and Science. Processes of Discovery and Explanation. Kluwer Academic/Plenum Publishers, New York (2001)

    Google Scholar 

  • Magnani, L.: Playing with anticipations as abductions. Strategic reasoning in an ecocognitive perspective. J. Appl. Logic - IfColog J. Logics and their Appl. 5(5), 1061–1092 (2018). Special Issue on "Logical Foundations of Strategic Reasoning" (guest editors W. Park and J. Woods)

    Google Scholar 

  • Magnani, L.: Morality in a Technological World. Knowledge as Duty. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  • Magnani, L.: Abductive Cognition. The Epistemological and Eco-Cognitive Dimensions of Hypothetical Reasoning. Springer, Heidelberg/Berlin (2009)

    Book  MATH  Google Scholar 

  • Magnani, L.: Naturalizing logic. errors of reasoning vindicated: Logic reapproaches cognitive science. J. Appl. Logic 13, 13–36 (2015a)

    Article  MathSciNet  Google Scholar 

  • Magnani, L.: The eco-cognitive model of abduction. Naturalizing the logic of abduction. J. Appl. Logic 13, 285–315 (2015b)

    Google Scholar 

  • Magnani, L.: The eco-cognitive model of abduction. Irrelevance and implausibility exculpated. J. Appl. Logic 15, 94–129 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Magnani, L.: The Abductive Structure of Scientific Creativity. An Essay on the Ecology of Cognition. Springer, Cham, Switzerland (2017)

    Book  Google Scholar 

  • Magnani, L., Bertolotti, T.: Cognitive bubbles and firewalls: Epistemic immunizations in human reasoning. In: Carlson, L., Hölscher, C., Shipley, T. (eds.) CogSci 2011, XXXIII Annual Conference of the Cognitive Science Society. Cognitive Science Society, Boston MA (2011)

    Google Scholar 

  • Magnani, L., Bertolotti, T. (eds.): Handbook of Model-Based Science. Springer, Switzerland (2017)

    Google Scholar 

  • Newell, A., Shaw, J.C., Simon, H.A.: Empirical Explorations of the Logic Theory Machine: A Case Study in Heuristic. In: Proceedings of the Western Joint Computer Conference [JCC 11], pp. 218–239. Los Angeles February (1957)

    Google Scholar 

  • Okada, T., Simon, H.A.: Collaborative discovery in a scientific domain. Cognit. Sci. 21, 109–146 (1997)

    Article  Google Scholar 

  • O’Rorke, P., Morris, S., Schulemburg, D.: Theory formation by abduction: A case study based on the chemical revolution. In: Shrager, J., Langley, P. (eds.) Computational Models of Scientific Discovery and Theory Formation, pp. 197–224. Morgan Kaufmann, San Mateo, CA (1990)

    Google Scholar 

  • Overgaard, S., Grünbaum, T.: What do weather watchers see? Perceptual intentionality and agency. Cognit. Semiotics 0, 8–31 (2007)

    Google Scholar 

  • Pachoud, B.: The teleological dimension of perceptual and motor intentionality. In: Petitot, J., Varela, F.J., Pachoud, B., Roy, J.-M. (eds.) Naturalizing Phenomenology, pp. 196–219. Stanford University Press, Stanford, CA (1999)

    Google Scholar 

  • Paul, G.: AI approaches to abduction. In: Gabbay, D., Kruse, R. (eds.) Abductive Reasoning and Learning, pp. 35–98. Springer, Dordrecht (2000)

    Chapter  Google Scholar 

  • Pease, A., Colton, S., Smaill, A., Lee, J.: A model of Lakatos’s philosophy of Mathematics. In: Magnani, L., Dossena, R. (eds.) Computing, Philosophy and Cognition, pp. 57–85. College Publications, London (2005)

    Google Scholar 

  • Pennock, R.T.: Tower of Babel. The Evidence Against the New Creationism. The MIT Press, Cambridge, MA. (1999)

    Book  Google Scholar 

  • Pennock, R.T.: Can Darwinian mechanisms make novel discoveries? Learning from discoveries made by evolving neural network. Found. Sci. 5(2), 225–238 (2000)

    Article  MathSciNet  Google Scholar 

  • Pericliev, V., Valdés-Pérez, R.E.: Automatic componential analysis of kinship semantics with a proposed structural solution to the problem of multiple models. Anthropol. Linguist. 40(2), 272–317 (1998)

    Google Scholar 

  • Petit, J.-L.: Constitution by movement: Husserl in the light of recent neurobiological findings. In: Petitot, J., Varela, F.J., Pachoud, B., Roy, J.-M. (eds.) Naturalizing Phenomenology, pp. 220–244. Stanford University Press, Stanford, CA (1999)

    Google Scholar 

  • Petitot, J.: Morphological eidetics for a phenomenology of perception. In: Petitot, J., Varela, F.J., Pachoud, B., Roy, J.-M. (eds.) Naturalizing Phenomenology, pp. 330–371. Stanford University Press, Stanford, CA (1999)

    Google Scholar 

  • Poincaré, H.: La science et l’hypothèse (English translation by W. J. G. [only initials indicated], 1958, Science and Hypothesis, with a Preface by J. Larmor, The Walter Scott Publishing Co., New York, 1905. Also reprinted in Essential Writings of Henri Poincaré, Random House, New York, 2001). Flammarion, Paris (1902)

    Google Scholar 

  • Raab, M., Gigerenzer, G.: Intelligence as smart heuristics. In: Sternberg, R.J., Prets, J.E. (eds.) Cognition and Intelligence. Identifying the Mechanisms of the Mind, pp. 188–207. Cambridge University Press, Cambridge, MA (2005)

    Google Scholar 

  • Raftopoulos, A.: Vision, thinking, and model-based inferences. In: Magnani, L., Bertolotti, T. (eds.) Handbook of Model-Based Science, pp. 573–604. Springer, Switzerland (2017)

    Google Scholar 

  • Rajamoney, S.A.: The design of discrimination experiments. Mach. Learn. 12, 185–203 (1993)

    Google Scholar 

  • Ramoni, M., Stefanelli, M., Magnani, L., Barosi, G.: An epistemological framework for medical knowledge-based systems. IEEE Trans. Syst., Man, Cybern. 22(6), 1361–1375 (1992)

    Article  Google Scholar 

  • Reggia, J.A., Nau, D.S., Wang, P.Y.: Diagnostic expert systems based on set covering model. J. Man-Mach. Stud. 19, 437–460 (1983)

    Article  Google Scholar 

  • Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32, 57–95 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Scott, P.D., Markovitch, S.: Experience selection and problem choice in an exploratory learning system. Mach. Learn. 12, 49–67 (1993)

    Google Scholar 

  • Shen, W.M.: Discovery as autonomous learning from the environment. Mach. Learn. 12, 143–165 (1993)

    Google Scholar 

  • Shrager, J., Langley, P. (eds.): Computational Models of Scientific Discovery and Theory Formation. Morgan Kaufmann, San Mateo, CA (1990)

    Google Scholar 

  • Simon, H.A., Valdés-Pérez, R.E., Sleeman, D.H.: Scientific discovery and simplicity of method. Artif. Intell. 91(2), 177–181 (1997)

    Google Scholar 

  • Svensson, H., Ziemke, T.: Making sense of embodiment: Simulation theories and the sharing of neural circuitry between sensorimotor and cognitive processes. In: Forbus, K.D., Gentner, D., Regier, T. (eds.) CogSci 2004, XXVI Annual Conference of the Cognitive Science Society. CD-Rom, Chicago, IL (2004)

    Google Scholar 

  • Swanson, D.R., Smalheiser, N.R.: An interactive system for finding complementary literatures: A stimulus to scientific discovery. Artif. Intell. 91(2), 183–203 (1997)

    Article  MATH  Google Scholar 

  • Thagard, P.: Computational Philosophy of Science. The MIT Press, Cambridge, MA (1988)

    Book  Google Scholar 

  • Thagard, P.: Explanatory coherence. Behav. Brain Sci. 12(3), 435–467 (1989)

    Article  Google Scholar 

  • Thagard, P.: Conceptual Revolutions. Princeton University Press, Princeton (1992)

    Book  Google Scholar 

  • Thagard, P., Litt, A.: Models of scientific explanation. In: Sun, R. (ed.) Cambridge Handbook of Computational Psychology, pp. 549–564. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  • Valdés-Pérez, R.E.: Principles of human computer collaboration for knowledge discovery in science. Artif. Intell. 107(2), 335–346 (1999)

    Article  MATH  Google Scholar 

  • Woods, J.: Errors of Reasoning. Naturalizing the Logic of Inference. College Publications, London (2013)

    Google Scholar 

  • Zeigarnik, A.V., Valdés-Pérez, R.E., Temkin, O.N., Bruk, L.G., Shalgunov, S.I.: Computer-aided mechanism elucidation of acetylene hydrocarboxylation to acrylic acid based on a novel union of empirical and formal methods. Organometallics 16(14), 3114–3127 (1997)

    Article  Google Scholar 

  • Zytkow, J. (ed.): Proceedings of the ML-92 Workshop on Machine Discovery (MD-92). The Wichita State University, National Institute for Aviation Research (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Magnani .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Magnani, L. (2022). AlphaGo, Locked Strategies, and Eco-cognitive Openness. In: Eco-Cognitive Computationalism. Cognitive Systems Monographs, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-030-81447-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81447-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81446-5

  • Online ISBN: 978-3-030-81447-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics