Skip to main content

Fruitful Decade of Phoma Secondary Metabolites from 2011 to 2020: Chemistry, Chemical Diversity, and Biological Activities

  • Chapter
  • First Online:
Phoma: Diversity, Taxonomy, Bioactivities, and Nanotechnology

Abstract

Fungi have been an extraordinary area of scientific research, and many secondary metabolites with intriguing chemical diversity along with interesting biological activities have been identified. Fungi like Phoma sp. have been investigated as a source of structurally unique metabolites over the past 10 years (2011–2020). A diverse range of natural products, viz., α-pyrone derivatives, isocoumarins, anthraquinones, xanthones, thiodiketopiperazines, cytochalasin derivatives, diphenyl ether derivatives, furopyrans, xyloketals, chromones, meroterpenoids, diterpenoids, polyketides, and alkaloids, have been reported from various Phoma spp. These metabolites illustrated phytotoxic, cytotoxic, antibacterial, antifungal, herbicidal, immunosuppressive, antiviral, antidiabetic (PTP1B inhibition), anti-Alzheimer (acetylcholinesterase inhibition), and antioxidant activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arora P, Wani ZA, Nalli Y, Ali A, Riyaz-Ul-Hassan S (2016) Antimicrobial potential of thiodiketopiperazine derivatives produced by Phoma sp., an endophyte of Glycyrrhiza glabra Linn. Microb Ecol 72:802-812.

    Article  CAS  PubMed  Google Scholar 

  • Chen ZM, Chen HP, Li Y, Feng T, Liu JK (2015) Cytochalasins from cultures of endophytic fungus Phoma multirostrata EA-12. J Antibiot 68(1):23-26.

    Article  CAS  Google Scholar 

  • Chen Y, Yang W, Zou G, Chen S, Pang J, She Z (2019) Bioactive polyketides from the mangrove endophytic fungi Phoma sp SYSU-SK-7. Fitoterapia 139:104369.

    Article  CAS  PubMed  Google Scholar 

  • Cimmino A, Andolfi A, Zonno MC, Avolio F, Berestetskiy A, Vurro M, Evidente A (2013) Chenopodolans A–C: phytotoxic furopyrans produced by Phoma chenopodiicola, a fungal pathogen of Chenopodium album. Phytochemistry 96:208-213.

    Article  CAS  PubMed  Google Scholar 

  • Cimmino A, Andolfi A, Zonno MC, Avolio F, Santini A, Tuzi A, Berestetskyi A, Vurro M, Evidente A (2013a) Chenopodolin: a phytotoxic unrearranged ent-pimaradiene diterpene produced by Phoma chenopodiicola, a fungal pathogen for Chenopodium album biocontrol. J Nat Prod 76:1291-1297.

    Article  CAS  PubMed  Google Scholar 

  • Davisona EK, Brimble MA (2019) Natural product derived privileged scaffolds in drug discovery. Curr Opin Chem Biol 52:1–8.

    Article  Google Scholar 

  • El-Elimat T, Raja HA, Ayers S, Kurina SJ, Burdette JE, Mattes Z, Sabatelle R, Bacon JW, Colby AH, Grinstaff MW, Pearce CJ, Oberlies NH (2019) Meroterpenoids from Neosetophomasp: A dioxa[433]propellane ring system, potent cytotoxicity, and prolific expression. Org Lett 21:529-534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsebai MF, Ghabbour HA (2016) Isocoumarin derivatives from the marine-derived fungus Phoma sp. 135. Tetrahedron Lett 57:354-356.

    Article  CAS  Google Scholar 

  • Evidence A, Cimmino A, Andolfi A, Berestetskiy A, Motta A (2011) Phomachalasins A–D, 26-oxa [16] and [15] cytochalasans produced by Phoma exigua var. exigua, a potential mycoherbicide for Cirsium arvense biocontrol. Tetrahedron 67:1557-1563.

    Article  Google Scholar 

  • Evidente M, Cimmino A, Zonno MC, Masi M, Berestetskyi A, Santoro E, Superchi S, Vurro M, Evidente A (2015) Phytotoxins produced by Phoma chenopodiicola, a fungal pathogen of Chenopodium album. Phytochemistry 117:482-488.

    Article  CAS  PubMed  Google Scholar 

  • Evidente M, Cimmino A, Zonno MC, Masi M, Santoro E, Vergura S, Evidente A (2016) Chenopodolans E and F, two new furopyrans produced by Phoma chenopodiicola and absolute configuration determination of chenopodolan B. Tetrahedron 72(51):8502-8507.

    Article  CAS  Google Scholar 

  • Fang MJ, Fang H, Li WJ, Huang DM, Wu Z, Zhao YF (2012) A new diphenyl ether from Phoma sp. strain, SHZK-2. Nat Prod Res 26:1224-1228.

    Article  CAS  PubMed  Google Scholar 

  • Gerry CJ, Schreiber SL (2018) Chemical probes and drug leads from advances in synthetic planning and methodology. Nat Rev Drug Discov 17:333-352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Medina M, Owen JR, El-Elimat T, Pearce CJ, Oberlies NH, Figueroa M, Medina-Franco JL (2017) Scaffold diversity of fungal metabolites. Front Pharmacol 8:180.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang S, Xu J, Li F, Zhou D, Xu L, Li C (2017) Identification and antifungal activity of metabolites from the mangrove fungus Phoma sp. L28. Chem Nat Comp 53:237-240.

    Article  CAS  Google Scholar 

  • Hussain H, Kock I, Al-Harrasi A, Al-Rawahi A, Abbas G, Green IR, Shah A, Badshah A, Saleem M, Draeger S, Schulz B (2014) Antimicrobial chemical constituents from endophytic fungus Phoma sp. Asian Pac J Trop Med 7:699-702.

    Article  CAS  Google Scholar 

  • Hussain H, John M, Al-Harrasi A, Shah A, Hassan Z, Abbas G, Rana UA, Green IR, Schulz B, Krohn, K (2015) Phytochemical investigation and antimicrobial activity of an endophytic fungus Phoma sp. J King Saud Univ Sci 27:92-95.

    Article  Google Scholar 

  • Kalam S, Khan NA, Singh J (2014) A novel phytotoxic phenolic compound from Phoma herbarum FGCC# 54 with herbicidal potential. Chem Nat Comp 50(4):644-647.

    Article  CAS  Google Scholar 

  • Kim EL, Li JL, Dang HT, Hong J, Lee CO, Kim DK, Yoon WD, Kim E, Liu Y, Jung JH (2012) Cytotoxic cytochalasins from the endozoic fungus Phoma sp of the giant jellyfish Nemopilema nomurai. Bioorg Med Chem Lett 22:3126-3129.

    Article  CAS  PubMed  Google Scholar 

  • Kim EL, Li JL, Xiao B, Hong J, Yoo ES, Yoon WD, Jung JH (2012a) A new cyclic tetrapeptide from the jellyfish-derived fungus Phoma sp. Chem Pharm Bull 60(12):1590-1593.

    Article  CAS  Google Scholar 

  • Kim EL, Wang H, Park, JH, Hong, J, Choi, JS, Im, DS, Jung, JH (2015) Cytochalasin derivatives from a jellyfish-derived fungus Phoma sp. Bioorg Med Chem Lett 25(10):2096-2099.

    Article  CAS  PubMed  Google Scholar 

  • Kim JW, Ko W, Kim E, Kim GS, Hwang GJ, Son S, Jeong MH, Hur JS, Oh H, Ko SK, Jang JH (2018) Anti-inflammatory phomalichenones from an endolichenic fungus Phoma sp. J Antibiot 71:753-756.

    Article  CAS  Google Scholar 

  • Kong F, Wang Y, Liu P, Dong T, Zhu W (2014) Thiodiketopiperazines from the marine-derived fungus Phoma sp. OUCMDZ-1847. J Nat Prod 77:132-137.

    Article  CAS  PubMed  Google Scholar 

  • Lachance H, Wetzel S, Kumar K, Waldmann H (2012) Charting, navigating, and populating natural product chemical space for drug discovery. J Med Chem 55:5989-6001.

    Article  CAS  PubMed  Google Scholar 

  • Lee MS, Wang SW, Wang GJ, Pang KL, Lee CK, Kuo YH, Lee TH (2016) Angiogenesis inhibitors and anti-inflammatory agents from Phoma sp NTOU4195. J Nat Prod 79(12):2983-2990.

    Article  CAS  PubMed  Google Scholar 

  • Li HT, Liu T, Yang R, Xie F, Yang Z, Yang Y, Zhou H, Ding ZT (2020) Phomretones A–F, C 12 polyketides from the co-cultivation of Phoma sp YUD17001 and Armillaria sp. RSC Adv 10:18384-18389.

    Article  CAS  Google Scholar 

  • Liu SS, Jiang JX, Huang R, Wang YT, Jiang BG, Zheng KX, Wu SH (2019) A new antiviral 14-nordrimane sesquiterpenoid from an endophytic fungus Phoma sp. Phytochem Lett 29:75-78.

    Article  CAS  Google Scholar 

  • Lu C, Li C, Gan Q, Zhao Y, Liu C, Gu Q, Zhu T, Zhang G, Che Q, Li D (2019) Phomanones AC from Phoma sp. HDN16-618: A mariana trench fungus. Nat Prod Commun 14:11-15.

    Google Scholar 

  • Maha A, Rukachaisirikul V, Saithong S, Phongpaichit S, Poonsuwan W, Sakayaroj J, Saparpakorn P, Hannongbua S (2016) Terezine derivatives from the fungus Phoma herbarum PSU-H256. Phytochemistry 122:223-229.

    Article  CAS  PubMed  Google Scholar 

  • Maha A, Rukachaisirikul V, Phongpaichit S, Preedanon S, Sakayaroj J (2017) Tyrosine and hydantoin derivatives from the fungus Phoma herbarum PSU-H256 isolated from Hevea brasiliensis. Tetrahedron 73(31):4597-4601.

    Article  CAS  Google Scholar 

  • Nalli Y, Arora P, Khan S, Malik F, Riyaz-Ul-Hassan S, Gupta V, Ali A (2019) Isolation, structural modification of macrophin from endophytic fungus Phoma macrostoma and their cytotoxic potential. Med Chem Res 28:260-266.

    Article  CAS  Google Scholar 

  • Peng X, Duan F, He Y, Gao Y, Chen J, Chang J, Ruan H, Ergocytochalasin A (2020) a polycyclic merocytochalasan from an endophytic fungus Phoma multirostrata XJ-2-1. Org Biomol Chem 18:4056-4062.

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Deshmukh P, Gade A, Ingle A, Kövics GJ, Irinyi L (2009) Phoma Saccardo: distribution, secondary metabolite production and biotechnological applications. Crit Rev Microbiol 35:182-96.

    Article  CAS  PubMed  Google Scholar 

  • Sang XN, Chen SF, Chen G, An X, Li SG, Li XN, Pei YH (2016) Phomeketales A–F, six unique metabolites from the endophytic fungus Phoma sp YN02-P-3. RSC Adv 6(69):64890-64894.

    Article  CAS  Google Scholar 

  • Sang XN, Chen SF, Chen G, An X, Li SG, Lu XJ, Pei YH (2017) Two pairs of enantiomeric α-pyrone dimers from the endophytic fungus Phoma sp. YN02-P-3. RSC Adv 7:1943-1946.

    Article  CAS  Google Scholar 

  • Sang XN, Chen SF, Tang MX, Wang HF, An X, Lu XJ, Zhao D, Wang YB, Bai J, Hua HM, Chen G (2017a) α-Pyrone derivatives with cytotoxic activities, from the endophytic fungus Phoma sp. YN02-P-3. Bioorg Med Chem Lett 27:3723-3725.

    Article  CAS  PubMed  Google Scholar 

  • Shi T, Qi J, Shao CL, Zhao DL, Hou XM, Wang CY (2017) Bioactive diphenyl ethers and isocoumarin derivatives from a gorgonian-derived fungus Phoma sp.(TA07-1). Mar Drugs 15:146.

    Google Scholar 

  • Shim SH, Baltrusaitis J, Gloer JB, Wicklow DT (2011) Phomalevones A−C: dimeric and pseudodimeric polyketides from a fungicolous Hawaiian isolate of Phoma sp (Cucurbitariaceae). J Nat Prod 74(3):395-401.

    Article  CAS  PubMed  Google Scholar 

  • Sumilat DA, Yamazaki H, Kanno SI, Saito R, Watanabe Y, Namikoshi M (2017) Biphenyl ether derivatives with protein tyrosine phosphatase 1B inhibitory activity from the freshwater fungus Phoma sp. J Antibiot 70(3):331-333.

    Article  CAS  Google Scholar 

  • Tai HC, Lee TH, Tang CH, Chen LP, Chen WC, Lee MS, Chen PC, Lin CY, Chi CW, Chen YJ, Lai CT (2019) Phomaketide A inhibits lymphangiogenesis in human lymphatic endothelial cells. Mar Drugs 17:215.

    Article  CAS  PubMed Central  Google Scholar 

  • Tan XM, Li LY, Sun LY, Sun BD, Niu SB, Wang MH, Zhang XY, Sun WS, Zhang GS, Deng H, Xing, XK, (2018) Spiciferone analogs from an endophytic fungus Phoma betae collected from desert plants in West China. J Antibiot 71:613-617.

    Article  CAS  Google Scholar 

  • Wang LW, Xu BG, Wang JY, Su ZZ, Lin FC, Zhang CL, Kubicek CP (2012) Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens. Appl Microbiol Biot 93:1231-1239.

    Article  CAS  Google Scholar 

  • Wang WX, Zheng MJ, Li J, Feng T, Li ZH, Huang R, Zheng YS, Sun H, Ai HL, Liu JK (2019) Cytotoxic polyketides from endophytic fungus Phoma bellidis harbored in Ttricyrtis maculate. Phytochem Lett 29:41-46.

    Article  CAS  Google Scholar 

  • Wijeratne EK, He H, Franzblau SG, Hoffman AM, Gunatilaka AL (2013) Phomapyrrolidones A–C, antitubercular alkaloids from the endophytic fungus Phoma sp NRRL 46751. J Nat Prod 76:1860-1865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Chen Z, Ding W, Liu Y, Ma Z (2018) Chemical constituents of the fermentative extracts of marine fungi Phoma sp CZD-F11 and Aspergillus sp CZD-F18 from Zhoushan Archipelago, China. Nat Prod Res 32:1562-1566.

    Article  CAS  PubMed  Google Scholar 

  • Xia X, Kim S, Bang S, Lee HJ, Liu C, Park CI, Shim SH (2015) Barceloneic acid C, a new polyketide from an endophytic fungus Phoma sp JS752 and its antibacterial activities. J Antibiot 68:139-141.

    Article  CAS  Google Scholar 

  • Xu JB, Fan YY, Gan LS, Zhou YB, Li J, Yue JM (2016) Cephalotanins A–D, Four norditerpenoids represent three highly rigid carbon skeletons from Cephalotaxus sinensis. Chem-Eur J 22:14648−14654.

    Article  CAS  PubMed  Google Scholar 

  • Zhang GF, Han WB, Cui JT, Ng SW, Guo ZK, Tan RX, Ge HM (2012) Neuraminidase inhibitory polyketides from the marine-derived fungus Phoma herbarum. Planta Med 78:76-78.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wang SQ, Li XJ, Zhang AL, Zhang Q, Gao JM (2012a) New insight into the stereochemistry of botryosphaeridione from a Phoma endophyte. J Mol Struct 1016:72-75.

    Article  CAS  Google Scholar 

  • Zhang J, Li Y, Ren F, Zhang Y, Liu X, Liu L, Che Y (2019) Phomanolides C–F from a Phoma sp: Meroterpenoids generated via hetero-Diels–Alder reactions. J Nat Prod 82:1678-1685.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors Hidayat Hussain and Nilufar Z. Mamadalieva are thankful to the Alexander von Humboldt Foundation for its generous support in providing the research opportunity in Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidayat Hussain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, H. et al. (2022). Fruitful Decade of Phoma Secondary Metabolites from 2011 to 2020: Chemistry, Chemical Diversity, and Biological Activities. In: Rai, M., Zimowska, B., Kövics, G.J. (eds) Phoma: Diversity, Taxonomy, Bioactivities, and Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-81218-8_10

Download citation

Publish with us

Policies and ethics