Skip to main content

Genomic Cross Prediction for Linseed Improvement

  • Chapter
  • First Online:
Accelerated Plant Breeding, Volume 4

Abstract

Crossing between two or more parents is a fundamental way to generate superior genetic variants through genetic recombination and transgressive segregation in modern crop breeding. The selection of parents and crosses is the first key step for the success of crop breeding. The traditional method for screening parents and crosses is primarily based on phenotypic performance and genetic differences between parents and the breeders’ empirical expertise. With the availability of genome-wide molecular markers and other genomic information, computer simulation offers a computational approach to simulate genetic recombination events between parents and progeny segregation of crosses and to generate segregation populations of any virtual crosses for various breeding schemes. Genomic selection (GS) enables to estimate breeding values (BVs) of the segregation individuals of crosses. Therefore, the integration of computer simulation and GS leads to an advanced genomic tool, named genomic cross prediction, to predict the genetic performance of different types of crosses by evaluating BVs and genetic variances of their segregation populations, enhancing the potential of success in crossbreeding. This chapter overviews the strategies and methods of genomic cross prediction and illustrates its application potential in crops, especially flax linseed breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bernardo R (2015) Genomewide selection of parental inbreds: classes of loci and virtual biparental populations. Crop Sci 55:2586–2595

    Google Scholar 

  • Chakravarti A (1991) A graphical representation of genetic and physical maps: the Marey map. Genomics 11:219–222

    Article  CAS  PubMed  Google Scholar 

  • Cloutier S, Ragupathy R, Miranda E, Radovanovic N, Reimer E et al (2012) Integrated consensus genetic and physical maps of flax (Linum usitatissimum L.). Theor Appl Genet 125:1783–1795

    Article  PubMed  PubMed Central  Google Scholar 

  • Covarrubias-Pazaran G (2016) Genome-assisted prediction of quantitative traits using the R package sommer. PLoS One 11:e0156744

    Article  PubMed  PubMed Central  Google Scholar 

  • Crossa J, PĂ©rez P, de los Campos G, Mahuku G, Dreisigacker S, et al. (2011) Genomic selection and prediction in plant breeding. J Crop Imrov 25:239–261

    Article  Google Scholar 

  • Crossa J, Perez P, Hickey J, Burgueno J, Ornella L et al (2013) Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity (Edinb) 112:48–60

    Article  Google Scholar 

  • Daetwyler, H.D.; Pong-Wong, R.; Villanueva, B.; Woolliams, J.A. (2010) The impact of genetic architecture on genome-wide evaluation methods. Genetics 185:1021–1031

    Google Scholar 

  • Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19:592–601

    Article  CAS  PubMed  Google Scholar 

  • Diederichsen A, Kusters PM, Kessler D, Bainas Z, Gugel RK (2013) Assembling a core collection from the flax world collection maintained by plant gene resources of Canada. Genet Resour Crop Evol 60:1479–1485

    Article  Google Scholar 

  • Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4:250–255

    Article  Google Scholar 

  • Faux AM, Gorjanc G, Gaynor RC, Battagin M, Edwards SM et al (2016) AlphaSim: software for breeding program simulation. Plant Genome 9. https://doi.org/10.3835/plantgenome2016.3802.0013

  • Fedoroff NV (2010) The past, present and future of crop genetic modification. Nat Biotechnol 27:461–465

    CAS  Google Scholar 

  • He L, Xiao J, Rashid KY, Jia G, Li P et al (2019a) Evaluation of genomic prediction for pasmo resistance in flax. Int J Mol Sci 20:359

    Article  PubMed Central  Google Scholar 

  • He L, Xiao J, Rashid KY, Yao Z, Li P et al (2019b) Genome-wide association studies for pasmo resistance in flax (Linum usitatissimum L.). Front. Plant Sci 9:1982

    Google Scholar 

  • Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31:423–447

    Article  CAS  PubMed  Google Scholar 

  • Hoyos-Villegas V, Arief VN, Yang W-H, Sun M, DeLacy IH et al (2019) QuLinePlus: extending plant breeding strategy and genetic model simulation to cross-pollinated populations—case studies in forage breeding. Heredity 122:684–695

    Article  CAS  PubMed  Google Scholar 

  • Iwata H, Jannink JL (2011) Accuracy of genomic selection prediction in barley breeding programs: a simulation study based on the real single nucleotide polymorphism data ofbBarley breeding lines. Crop Sci 51:1915–1927

    Article  Google Scholar 

  • Jahufer MZZ, Luo D (2018) DeltaGen: a comprehensive decision support tool for plant breeders. Crop Sci. https://doi.org/10.2135/cropsci2017.2107.0456

  • Jannink, J.L. (2010) Dynamics of long-term genomic selection. Genet Sel Evol 42:35

    Google Scholar 

  • Khan N, Shazadee H, Jia B, Bartaula S, Sertse D et al (2021) Genomic prediction for drought stress and root development traits in flax (Linum usitatissimum L.). Front Plant Sci

    Google Scholar 

  • Lan S, Zheng C, Hauck K, McCausland M, Duguid SD et al (2020) Genomic prediction accuracy of seven breeding selection traits improved by QTL identification in flax. Int J Mol Sci 21:1577

    Article  CAS  PubMed Central  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Zhang L, Hu J, Zhang F, Chen B et al (2017) Genome-wide association mapping reveals the genetic control underlying branch angle in rapeseed (Brassica napus L.). front. Plant Sci 8:1054

    Google Scholar 

  • Lin Z, Cogan NO, Pembleton LW, Spangenberg GC, Forster JW et al (2016) Genetic gain and inbreeding from genomic selection in a simulated commercial breeding program for perennial ryegrass. Plant Genome 9. https://doi.org/10.3835/plantgenome2015.3806.0046

  • Lipka AE, Kandianis CB, Hudson ME, Yu J, Drnevich J et al (2015) From association to prediction: statistical methods for the dissection and selection of complex traits in plants. Curr Opin Plant Biol 24:110–118

    Article  PubMed  Google Scholar 

  • Liu X, Huang M, Fan B, Buckler ES, Zhang Z (2016) Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet 12:e1005767

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Tessema BB, Jensen J, Cericola F, Andersen JR et al (2019) ADAM-plant: a software for stochastic simulations of plant breeding from molecular to phenotypic level and from simple selection to complex speed breeding programs. Front Plant Sci 9:1926

    Article  PubMed  PubMed Central  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadi M, Tiede T, Smith KP (2015) PopVar: a genome-wide procedure for predicting genetic variance and correlated response in biparental breeding populations. Crop Sci 55:2068–2077

    Article  CAS  Google Scholar 

  • Perez P, de los Campos G (2014) Genome-wide regression and prediction with the BGLR statistical package. Genetics 198:483–495

    Article  PubMed  PubMed Central  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  CAS  PubMed  Google Scholar 

  • Ren WL, Wen YJ, Dunwell JM, Zhang YM (2017) pKWmEB: integration of Kruskal-Wallis test with empirical Bayes under polygenic background control for multi-locus genome-wide association study. Heredity (Edinb) 120:208–218

    Article  Google Scholar 

  • Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F et al (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 44:217–220

    Article  CAS  PubMed  Google Scholar 

  • Schaefer CM, Bernardo R (2013) Genomewide association mapping of flowering time, kernel composition, and disease resistance in historical Minnesota maize inbreds. Crop Sci 53:2518–2529

    Article  Google Scholar 

  • Schmid KJ, Thorwarth P (2014) Genomic selection in barley breeding. In: Kumlehn J, Stein N (eds) Biotechnological approaches to barley improvement biotechnology in agriculture and forestry. Springer, Berlin/Heidelberg, pp 367–378

    Chapter  Google Scholar 

  • Schnell FW, Utz HF (1975) F1-leistung und elternwahl euphy-derzu ¨chtungvonselbstbefruchtern,. in Bericht u ¨ber die Arbeitstagung der Vereinigung O “sterreichischer Pflanzenzu” chter BAL Gumpenstein, Gumpenstein, Austria:243–248

    Google Scholar 

  • Sekine D, Yabe S (2020) Simulation-based optimization of genomic selection scheme for accelerating genetic gain while preventing inbreeding depression in onion breeding. Breed Sci 70:594–604

    Article  PubMed  PubMed Central  Google Scholar 

  • Siberchicot A, Bessy A, Gueguen L, Marais GAB (2017) MareyMap online: a user-friendly web application and database service for estimating recombination rates using physical and genetic maps. Genome Biol Evol 9:2506–2509

    Article  PubMed  PubMed Central  Google Scholar 

  • Soto-Cerda BJ, Diederichsen A, Ragupathy R, Cloutier S (2013) Genetic characterization of a core collection of flax (Linum usitatissimum L.) suitable for association mapping studies and evidence of divergent selection between fiber and linseed types. BMC Plant Biol 13:78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spindel, J.; Begum, H.; Akdemir, D.; Virk, P.; Collard, B.; Redona, E.; Atlin, G.; Jannink, J.L.; McCouch, S.R. (2015) Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet. 2015, 11, (2), e1004982.

    Google Scholar 

  • Sun J, Khan M, Amir R, Gul A (2020) Genomic selection in wheat breeding. In: Ozturk M, Gul A (eds) Climate change and food security with emphasis on wheat. Academic Press, pp 321–330

    Chapter  Google Scholar 

  • Tamba CL, Ni YL, Zhang YM (2017) Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies. PLoS Comput Biol 13:e1005357

    Article  PubMed  PubMed Central  Google Scholar 

  • Thavamanikumar S, Dolferus R, Thumma BR (2015) Comparison of genomic selection models to predict flowering time and spike grain number in two hexaploid wheat doubled haploid populations. G3 (Bethesda) 5:1991–1998

    Google Scholar 

  • Tiede T, Kumar L, Mohammadi M, Smith KP (2015a) Predicting genetic variance in bi-parental breeding populations is more accurate when explicitly modeling the segregation of informative genomewide markers. Mol Breed 35:199

    Article  Google Scholar 

  • Tiede T, Mohammadi M, Smith KP (2015b) PopVar: genomic breeding tools: genetic variance prediction and cross-validation. R package version 121

    Google Scholar 

  • Voorrips RE, Maliepaard CA (2012) The simulation of meiosis in diploid and tetraploid organisms using various genetic models. BMC Bioinform 13:248

    Article  Google Scholar 

  • Wang J, Dieters D (2008) QuLine, A software that simulates breeding programs for developing inbred lines Version 2.1. User’s Manual

    Google Scholar 

  • Wang J, van Ginkel M, Podlich D, Ye G, Trethowan R et al (2003) Comparison of two breeding strategies by computer simulation. Crop Sci 43:1764–1773

    Article  Google Scholar 

  • Wang J, Singh RP, Braun HJ, Pfeiffer WH (2009) Investigating the efficiency of the single backcrossing breeding strategy through computer simulation. Theor Appl Genet 118:683–694

    Article  PubMed  Google Scholar 

  • Wang Z, Hobson N, Galindo L, Zhu S, Shi D et al (2012) The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J 72:461–473

    Article  PubMed  Google Scholar 

  • Wang SB, Feng JY, Ren WL, Huang B, Zhou L et al (2016) Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci Rep 6:19444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Xu Y, Hu ZL, Xu CW (2018) Genomic selection methods for crop improvement: current status and prospects. Crop J 6:330–340

    Article  Google Scholar 

  • Wen YJ, Zhang H, Ni YL, Huang B, Zhang J et al (2018) Methodological implementation of mixed linear models in multi-locus genome-wide association studies. Brief Bioinform 19:700–712

    Article  PubMed  Google Scholar 

  • Xu Y, Lu Y, Xie C, Gao S, Wan J et al (2012) Whole-genome strategies for marker-assisted plant breeding. Mol Breed 29:833–854

    Article  Google Scholar 

  • Yao J, Zhao D, Chen X, Zhang Y, Wang J (2018) Use of genomic selection and breeding simulation in cross prediction for improvement of yield and quality in wheat (Triticum aestivum L.). Crop J 6:353–365

    Article  Google Scholar 

  • You FM, Booker HM, Duguid SD, Jia G, Cloutier S (2016a) Accuracy of genomic selection in biparental populations of flax (Linum usitatissimum L.). Crop J 4:290–303

    Article  Google Scholar 

  • You FM, Duguid SD, Lam I, Cloutier S, Rashid KY et al (2016b) Pedigrees and genetic base of flax cultivars registered in Canada. Can J Plant Sci 96:837–852

    Article  Google Scholar 

  • You FM, Jia G, Xiao J, Duguid SD, Rashid KY et al (2017) Genetic variability of 27 traits in a core collection of flax (Linum usitatissimum L.). front. Plant Sci 8:1636

    Google Scholar 

  • You FM, Xiao J, Li P, Yao Z, Gao J et al (2018) Chromosome-scale pseudomolecules refined by optical, physical, and genetic maps in flax. Plant J 95:371–384

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Zhang YM, Tamba CL (2018) A fast mrMLM algorithm for multi-locus genome-wide association studies. bioRxiv. https://doi.org/10.1101/341784

  • Zhang J, Feng JY, Ni YL, Wen YJ, Niu Y et al (2017) pLARmEB: integration of least angle regression with empirical Bayes for multilocus genome-wide association studies. Heredity (Edinb) 118:517–524

    Article  CAS  Google Scholar 

  • Zhang Y-W, Tamba CL, Wen Y-J, Li P, Ren W-L et al (2020) mrMLM v4.0: an R platform for multi-locus genome-wide association studies. BioRxiv. https://doi.org/10.1101/2020.1103.1104.976464

  • Zhong, S.; Jannink, J.-L. (2007) Using quantitative trait loci results to discriminate among crosses on the basis of their progeny mean and variance. Genetics 177, 567–576

    Google Scholar 

  • Zingaretti ML, Monfort A, Perez-Enciso M (2019) pSBVB: a versatile simulation tool to evaluate genomic selection in polyploid species. G3 (Bethesda) 9:327–334

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is a part of the 4DWheat project, and was also supported by the total Utilization Flax GENomics (TUFGEN) project. The two projects were funded by Agriculture and Agri-Food Canada, Genome Canada and co-funders from the wheat and flax industries in Canada including producer groups. The authors also recognize the support provided by Genome Prairie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank M. You .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

You, F.M., Zheng, C., Bartaula, S., Khan, N., Wang, J., Cloutier, S. (2022). Genomic Cross Prediction for Linseed Improvement. In: Gosal, S.S., Wani, S.H. (eds) Accelerated Plant Breeding, Volume 4. Springer, Cham. https://doi.org/10.1007/978-3-030-81107-5_13

Download citation

Publish with us

Policies and ethics