Skip to main content

Inductive Benchmarks for Automated Reasoning

  • Conference paper
  • First Online:
Intelligent Computer Mathematics (CICM 2021)

Abstract

We present a large set of benchmarks for automated theorem provers that require inductive reasoning. Motivated by the need to compare first-order theorem provers, SMT solvers and inductive theorem provers, the setting of our examples follows the SMT-LIB standard. Our benchmark set contains problems with inductive data types as well as integers. In addition to SMT-LIB encodings, we provide translations to some other less common input formats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Some concepts, like conjectures that contain existential quantification, or some uninterpreted functions used to model out of bounds access for list indexing, are not straightforwardly translatable into these formats.

References

  1. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_14

    Chapter  Google Scholar 

  2. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB). www.SMT-LIB.org (2016)

  3. Boyer, R.S., Moore, J.S.: A Computational Logic Handbook, Perspectives in computing, vol. 23. Academic Press (1979)

    Google Scholar 

  4. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: TIP: tons of inductive problems. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS (LNAI), vol. 9150, pp. 333–337. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20615-8_23

    Chapter  Google Scholar 

  5. Cruanes, S.: Superposition with structural induction. In: Proceedings of FRoCoS, pp. 172–188 (2017)

    Google Scholar 

  6. Hajdú, M., Hozzová, P., Kovács, L., Schoisswohl, J., Voronkov, A.: Induction with generalization in superposition reasoning. In: Benzmüller, C., Miller, B. (eds.) CICM 2020. LNCS (LNAI), vol. 12236, pp. 123–137. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53518-6_8

    Chapter  Google Scholar 

  7. Hozzová, P., Kovács, L., Voronkov, A.: Integer induction in saturation. EasyChair Preprint no. 5176 (EasyChair, 2021)

    Google Scholar 

  8. Kovács, L., Voronkov, A.: First-order theorem proving and vampire. In: Proceedings of CAV, pp. 1–35 (2013)

    Google Scholar 

  9. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_26

    Chapter  Google Scholar 

  10. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-4_20

    Chapter  MATH  Google Scholar 

  11. Passmore, G., et al.: The imandra automated reasoning system (system description). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12167, pp. 464–471. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51054-1_30

    Chapter  Google Scholar 

  12. Reger, G., Voronkov, A.: Induction in saturation-based proof search. In: Proceedings of CADE, pp. 477–494 (2019)

    Google Scholar 

  13. Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: Proceedings of VMCAI, pp. 80–98 (2015)

    Google Scholar 

  14. Schneidewind, C., Grishchenko, I., Scherer, M., Maffei, M.: ethor: Practical and provably sound static analysis of ethereum smart contracts, pp. 621–640 (2020). https://doi.org/10.1145/3372297.3417250, https://doi.org/10.1145/3372297.3417250

  15. Sonnex, W., Drossopoulou, S., Eisenbach, S.: Zeno: an automated prover for properties of recursive data structures. In: Proceedings of TACAS, pp. 407–421 (2012)

    Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the ERC CoG ARTIST 101002685, the ERC StG 2014 SYMCAR 639270, the EPSRC grant EP/P03408X/1 and the Austrian FWF research project LogiCS W1255-N23.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Hozzová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hajdu, M., Hozzová, P., Kovács, L., Schoisswohl, J., Voronkov, A. (2021). Inductive Benchmarks for Automated Reasoning. In: Kamareddine, F., Sacerdoti Coen, C. (eds) Intelligent Computer Mathematics. CICM 2021. Lecture Notes in Computer Science(), vol 12833. Springer, Cham. https://doi.org/10.1007/978-3-030-81097-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81097-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81096-2

  • Online ISBN: 978-3-030-81097-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics