Skip to main content

LSTM Processing of Experimental Time Series with Varied Quality

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Abstract

Automatic processing and verification of data obtained in experiments have an essential role in modern science. In the paper, we discuss the assessment of data obtained in meteorological measurements conducted in Biebrza National Park in Poland. The data is essential for understanding the complex environmental processes, such as global warming. The measurements of CO2 flux brings a vast amount of data but suffer from drawbacks like high uncertainty. Part of the data has a high-level of credibility while, others are not reliable. The method of automatic evaluation of data with varied quality is proposed. We use LSTM networks with a weighted square mean error loss function. This approach allows incorporating the information on data reliability in the training process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, OSDI 201, pp. 2265–2836. USENIX Association, USA (2016)

    Google Scholar 

  2. Aubinet, M., Vesala, T., Papale, D. (eds.): Eddy Covariance: A Practical Guide to Measurement and Data Analysis. Springer, Netherlands (2012). https://doi.org/10.1007/978-94-007-2351-1

  3. Baldocchi, D.D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biol. 9(4), 479–492 (2003). https://doi.org/10.1046/j.1365-2486.2003.00629.x

    Article  Google Scholar 

  4. Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 8(1) (2018). https://doi.org/10.1038/s41598-018-24271-9

  5. Christiansen, N.H., Voie, P.E.T., Winther, O., Høgsberg, J.: Comparison of neural network error measures for simulation of slender marine structures. J. Appl. Math. 2014, 1–11 (2014). https://doi.org/10.1155/2014/759834

    Article  Google Scholar 

  6. Dengel, S., Zona, D., Sachs, T., Aurela, M., Jammet, M., Parmentier, F.J.W., Oechel, W., Vesala, T.: Testing the applicability of neural networks as a gap-filling method using CH4 flux data from high latitude wetlands. Biogeosciences 10(12), 8185–8200 (2013). https://doi.org/10.5194/bg-10-8185-2013

    Article  Google Scholar 

  7. Falge, E., et al.: Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric. Forest Meteorol. 107(1), 43–69 (2001). https://doi.org/10.1016/s0168-1923(00)00225-2

  8. Fathalla, A., Salah, A., Li, K., Li, K., Francesco, P.: Deep end-to-end learning for price prediction of second-hand items. Knowl. Inf. Syst. 62(12), 4541–4568 (2020). https://doi.org/10.1007/s10115-020-01495-8

    Article  Google Scholar 

  9. Fortuniak, K., Pawlak, W., Bednorz, L., Grygoruk, M., Siedlecki, M., Zielinski, M.: Methane and carbon dioxide fluxes of a temperate mire in central Europe. Agri. Forest Meteorolog. 232, 306–318 (2017)

    Article  Google Scholar 

  10. Fortuniak, K., Pawlak, W., Siedlecki, M., Chambers, S., Bednorz, L.: Temperate mire fluctuations from carbon sink to carbon source following changes in water table. Sci. Total Environ. 756 (2021). https://doi.org/10.1016/j.scitotenv.2020.144071

  11. Gers, F.A., Eck, D., Schmidhuber, J.: Applying LSTM to time series predictable through time-window approaches. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 669–676. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44668-0_93

    Chapter  Google Scholar 

  12. Goodfellow, I., Bengio, J., Courville, A., Bach, F.: Deep Learning. MIT Press Ltd (2016)

    Google Scholar 

  13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  14. Ke, J., Zheng, H., Yang, H., Chen, X.M.: Short-term forecasting of passenger demand under on-demand ride services: a spatio-temporal deep learning approach. Transp. Res. Part C Emerging Technol. 85, 591–608 (2017). https://doi.org/10.1016/j.trc.2017.10.016

    Article  Google Scholar 

  15. Kim, Y., et al.: Gap-filling approaches for eddy covariance methane fluxes: a comparison of three machine learning algorithms and a traditional method with principal component analysis. Global Change Biol. 26(3), 1499–1518 (2019). https://doi.org/10.1111/gcb.14845

    Article  Google Scholar 

  16. Moffat, A.M., et al.: Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agric. Forest Meteorol. 147(3–4), 209–232 (2007). https://doi.org/10.1016/j.agrformet.2007.08.011

    Article  Google Scholar 

  17. Papale, D.: Data gap filling. In: Eddy Covariance, pp. 159–172. Springer, Netherlands (2011). https://doi.org/10.1007/978-94-007-2351-1_6

  18. Selvin, S., Vinayakumar, R., Gopalakrishnan, E.A., Menon, V.K., Soman, K.P.: Stock price prediction using LSTM, RNN and CNN-sliding window model. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE (2017). https://doi.org/10.1109/icacci.2017.8126078

  19. Spelmen, V.S., Porkodi, R.: A review on handling imbalanced data. In: 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT). IEEE (2018). https://doi.org/10.1109/icctct.2018.8551020

  20. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, pp. 3104–3112. MIT Press, Cambridge (2014)

    Google Scholar 

Download references

Acknowledgements

Funding for this research was partly provided (data collection) by the National Science Centre, Poland under the project UMO-2015/17/B/ST10/02187. The site was established in 2012 under project UMO-2011/01/B/ST10/07550 founded by National Science Centre, Poland. The authors thank the authorities of the Biebrza National Park for allowing continuous measurements in the area of the Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Podlaski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Podlaski, K., Durka, M., Gwizdałła, T., Miniak-Górecka, A., Fortuniak, K., Pawlak, W. (2021). LSTM Processing of Experimental Time Series with Varied Quality. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12747. Springer, Cham. https://doi.org/10.1007/978-3-030-77980-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77980-1_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77979-5

  • Online ISBN: 978-3-030-77980-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics