Skip to main content

A Petri Dish for Histopathology Image Analysis

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2021)

Abstract

With the rise of deep learning, there has been increased interest in using neural networks for histopathology image analysis, a field that investigates the properties of biopsy or resected specimens traditionally manually examined under a microscope by pathologists. However, challenges such as limited data, costly annotation, and processing high-resolution and variable-size images make it difficult to quickly iterate over model designs.

Throughout scientific history, many significant research directions have leveraged small-scale experimental setups as petri dishes to efficiently evaluate exploratory ideas. In this paper, we introduce a minimalist histopathology image analysis dataset (MHIST), an analogous petri dish for histopathology image analysis. MHIST is a binary classification dataset of 3,152 fixed-size images of colorectal polyps, each with a gold-standard label determined by the majority vote of seven board-certified gastrointestinal pathologists and annotator agreement level. MHIST occupies less than 400 MB of disk space, and a ResNet-18 baseline can be trained to convergence on MHIST in just 6 min using 3.5 GB of memory on a NVIDIA RTX 3090. As example use cases, we use MHIST to study natural questions such as how dataset size, network depth, transfer learning, and high-disagreement examples affect model performance.

By introducing MHIST, we hope to not only help facilitate the work of current histopathology imaging researchers, but also make the field more-accessible to the general community. Our dataset is available at https://bmirds.github.io/MHIST.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jennings, B.H.: Drosophila - a versatile model in biology & medicine. Mater. Today, 14(5), 190–195 (2011). http://www.sciencedirect.com/science/article/pii/S1369702111701134

  2. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE, 86(11), 2278–2324 (1998). https://ieeexplore.ieee.org/document/726791

  3. Goodfellow, I.J., et al.: Generative adversarial networks (2014). https://arxiv.org/pdf/1406.2661.pdf

  4. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2014). https://arxiv.org/pdf/1412.6980.pdf

  5. Srinidhi, C.L., Ciga, O., Martel, A.L.: Deep neural network models for computational histopathology: a survey. Med. Image Anal. 101813 (2020). https://www.sciencedirect.com/science/article/pii/S1361841520301778

  6. Arvaniti, E., et al.: Automated Gleason grading of prostate cancer tissue microarrays via deep learning. Nat. Sci. Rep. 8(1), 1–11 (2018). https://www.nature.com/articles/s41598-018-30535-1

  7. Bulten, W., et al.: Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol. 21(2), 233–241 (2020). https://arxiv.org/pdf/1907.07980.pdf

  8. Hekler, A., et al.: Pathologist-level classification of histopathological melanoma images with deep neural networks. Euro. J. Cancer, 115, 79–83 (2019). http://www.sciencedirect.com/science/article/pii/S0959804919302758

  9. Shah, M., Wang, D., Rubadue, C., Suster, D., Beck, A.: Deep learning assessment of tumor proliferation in breast cancer histological images. In: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 600–603 (2017). https://ieeexplore.ieee.org/abstract/document/8217719

  10. Ström, P., et al.: Pathologist-level grading of prostate biopsies with artificial intelligence. CoRR (2019). http://arxiv.org/pdf/1907.01368

  11. Wei, J.W., Tafe, L.J., Linnik, Y.A., Vaickus, L.J., Tomita, N., Hassanpour, S.: Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks. Sci. Rep. 9(1), 1–8 (2019). https://www.nature.com/articles/s41598-019-40041-7

  12. Zhang, Z., et al.: Pathologist-level interpretable whole-slide cancer diagnosis with deep learning. Nat. Mach. Intell. 1, 236–245 (2019). https://www.nature.com/articles/s42256-019-0052-1

  13. Bándi, P., et al.: From detection of individual metastases to classification of lymph node status at the patient level: the camelyon17 challenge. IEEE Trans. Med. Imaging, 38(2), 550–560 (2019). https://ieeexplore.ieee.org/document/8447230

  14. Colorectal cancer statistics. https://www.cancer.org/cancer/colon-rectal-cancer/about/key-statistics.html. Accessed 06 Jan 2021

  15. Rex, D.K., et al.: Colorectal cancer screening: Recommendations for physicians and patients from the U.S. multi-society task force on colorectal cancer. Gastroenterology, 153, 307–323 (2017). www.gastrojournal.org/article/S0016-5085(17)35599--3/fulltext

  16. Abdeljawad, K., Vemulapalli, K.C., Kahi, C.J., Cummings, O.W., Snover, D.C., Rex, D.K.: Sessile serrated polyp prevalence determined by a colonoscopist with a high lesion detection rate and an experienced pathologist. Gastrointest. Endosc. 81, 517–524 (2015). https://pubmed.ncbi.nlm.nih.gov/24998465/

  17. Farris, A.B., et al.: Sessile serrated adenoma: challenging discrimination from other serrated colonic polyps. Am. J. Surg. Pathol. 32, 30–35 (2008). https://pubmed.ncbi.nlm.nih.gov/18162767/

  18. Glatz, K., Pritt, B., Glatz, D., HArtmann, A., O’Brien, M.J., Glaszyk, H.: A multinational, internet-based assessment of observer variability in the diagnosis of serrated colorectal polyps. Am. J. Clin. Pathol. 127(6), 938–945 (2007). https://pubmed.ncbi.nlm.nih.gov/17509991/

  19. Khalid, O., Radaideh, S., Cummings, O.W., O’brien, M.J., Goldblum, J.R., Rex, D.K.: Reinterpretation of histology of proximal colon polyps called hyperplastic in 2001. World J. Gastroenterol. 15(30), 3767–3770 (2009). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2726454/

  20. Wong, N.A.C.S., Hunt, L.P., Novelli, M.R., Shepherd, N.A., Warren, B.F.: Observer agreement in the diagnosis of serrated polyps of the large bowel. Histopathology, 55(1), 63–66 (2009). https://pubmed.ncbi.nlm.nih.gov/19614768/

  21. Understanding your pathology report: Colon polyps (sessile or traditional serrated adenomas). https://www.cancer.org/treatment/understanding-your-diagnosis/tests/understanding-your-pathology-report/colon-pathology/colon-polyps-sessile-or-traditional-serrated-adenomas.html. Accessed 06 Jan 2021

  22. Gurudu, S.R., et al.: Sessile serrated adenomas: Demographic, endoscopic and pathological characteristics. World J. Gastroenterol. 16(27), 3402–3405 (2010). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904886/

  23. Nagtegaal, I.D., et al.: The 2019 who classification of tumours of the digestive system. Histopathology, 76(2), 182–188 (2020). https://onlinelibrary.wiley.com/doi/abs/10.1111/his.13975

  24. Chilamkurthy, S., et al.: Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet, 392(10162), 2388–2396 (2018). www.thelancet.com/journals/lancet/article/PIIS0140-6736(18)31645--3/fulltext

  25. Gulshan, V., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 316(22), 2402–2410 (2016). https://jamanetwork.com/journals/jama/fullarticle/2588763

  26. Irvin, J., et al.: Chexpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: Association for the Advancement of Artificial Intelligence (AAAI) (2019). http://arxiv.org/pdf/1901.07031

  27. Kanavati, F., et al.: Weakly-supervised learning for lung carcinoma classification using deep learning. Nat. Sci. Rep. 10(1), 1–11 (2020). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7283481/

  28. Korbar, B., et al.: Deep learning for classification of colorectal polyps on whole-slide images. J. Pathol. Inform. 8 (2017). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5545773/

  29. Sertel, O., Kong, J., Catalyurek, U.V., Lozanski, G., Saltz, J.H., Gurcan, M.N.: Histopathological image analysis using model-based intermediate representations and color texture: follicular lymphoma grading. J. Sig. Process. Syst. 55(1), 169–183 (2009). https://link.springer.com/article/10.1007/s11265-008-0201-y

  30. Wang, S., Xing, Y., Zhang, L., Gao, H., Zhang, H.: Deep convolutional neural network for ulcer recognition in wireless capsule endoscopy: experimental feasibility and optimization. Computat. Math. Meth. Med. (2019). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766681/

  31. Wei, J., Wei, J., Jackson, C., Ren, B., Suriawinata, A., Hassanpour, S.: Automated detection of celiac disease on duodenal biopsy slides: a deep learning approach. J. Pathol. Inform. 10(1), 7 (2019). http://www.jpathinformatics.org/article.asp?issn=2153-3539;year=2019;volume=10;issue=1;spage=7;epage=7;aulast=Wei;t=6

  32. Wei, J., et al.: Difficulty translation in histopathology images. In: Artificial Intelligence in Medicine (AIME) (2020). https://arxiv.org/pdf/2004.12535.pdf

  33. Zhou, J., et al.: Weakly supervised 3D deep learning for breast cancer classification and localization of the lesions in MR images. J. Magn. Reson. Imaging, 50(4), 1144–1151 (2019). https://onlinelibrary.wiley.com/doi/abs/10.1002/jmri.26721

  34. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015). http://arxiv.org/pdf/1512.03385

  35. Benkendorf, D.J., Hawkins, C.P.: Effects of sample size and network depth on a deep learning approach to species distribution modeling. Ecol. Inform. 60, 101137 (2020). http://www.sciencedirect.com/science/article/pii/S157495412030087X

  36. Kornblith, S., Shlens, J., Le, Q.V.: Do better imagenet models transfer better? CoRR (2018). http://arxiv.org/pdf/1805.08974

  37. Coudray, N., Moreira, A.L., Sakellaropoulos, T., Fenyö, D., Razavian, N., Tsirigos, A.: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24(10), 1559–1567 (2017). https://www.nature.com/articles/s41591-018-0177-5

  38. Ehteshami Bejnordi, B., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA, 318(22), 2199–2210 (2017). https://jamanetwork.com/journals/jama/fullarticle/2665774

  39. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118 (2017). https://www.nature.com/articles/nature21056

  40. Ghorbani, A., Natarajan, V., Coz, D., Liu, Y.: Dermgan: synthetic generation of clinical skin images with pathology (2019). https://arxiv.org/pdf/1911.08716.pdf

  41. Wei, J.W., et al.: Evaluation of a deep neural network for automated classification of colorectal polyps on histopathologic slides. JAMA Netw. Open, 3(4) (2020). https://jamanetwork.com/journals/jamanetworkopen/article-abstract/2764906

  42. Wei, J., et al.: Learn like a pathologist: curriculum learning by annotator agreement for histopathology image classification. In: Winter Conference on Applications of Computer Vision (WACV) (2020)

    Google Scholar 

  43. Brown, T.B., et al.: Language models are few-shot learners. arXiv preprint arXiv:2005.14165 (2020). https://arxiv.org/pdf/2005.14165.pdf

  44. Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for deep learning in nlp. arXiv preprint arXiv:1906.02243 (2019). https://arxiv.org/pdf/1906.02243.pdf

  45. Rawal, A., Lehman, J., Such, F.P., Clune, J., Stanley, K.O.: Synthetic petri dish: a novel surrogate model for rapid architecture search. arXiv preprint arXiv:2005.13092 (2020). https://arxiv.org/pdf/2005.13092.pdf

  46. Greydanus, S.: Scaling down deep learning. arXiv preprint arXiv:2011.14439 (2020). https://arxiv.org/pdf/2011.14439.pdf

  47. Veeling, B.S., Linmans, J., Winkens, J., Cohen, T., Welling, M.: Rotation equivariant CNNs for digital pathology. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 210–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_24

    Chapter  Google Scholar 

  48. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_51

    Chapter  Google Scholar 

  49. Veta, M., et al.: Predicting breast tumor proliferation from whole-slide images: the tupac16 challenge. Med. Image Anal. 54, 111–121 (2019). https://doi.org/10.1016/j.media.2019.02.012, http://www.sciencedirect.com/science/article/pii/S1361841518305231

  50. Aresta, G., et al.: Bach: Grand challenge on breast cancer histology images. Med. Image Anal.56, 122–139 (2019). https://doi.org/10.1016/j.media.2019.05.010, http://www.sciencedirect.com/science/article/pii/S1361841518307941

  51. Swiderska-Chadaj, Z., et al.: Learning to detect lymphocytes in immunohistochemistry with deep learning. Med. Image Anal. 58, (2019). https://doi.org/10.1016/j.media.2019.101547, http://www.sciencedirect.com/science/article/pii/S1361841519300829

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, J. et al. (2021). A Petri Dish for Histopathology Image Analysis. In: Tucker, A., Henriques Abreu, P., Cardoso, J., Pereira Rodrigues, P., Riaño, D. (eds) Artificial Intelligence in Medicine. AIME 2021. Lecture Notes in Computer Science(), vol 12721. Springer, Cham. https://doi.org/10.1007/978-3-030-77211-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77211-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77210-9

  • Online ISBN: 978-3-030-77211-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics