Skip to main content

Drug Resistance in Protozoal Infections

  • Chapter
  • First Online:
Biochemistry of Drug Resistance

Abstract

Parasitic infections have enormous health, social, and economic influence worldwide, predominantly in tropical and subtropical areas. Diseases caused by protozoan parasites, like malaria, leishmaniasis, trypanosomiasis, toxoplasmosis, giardiasis, etc. have major contributions in the global death rate due to infections. The burden of these parasitic protozoans has increased around the globe due to the lack of effective, commercially-availablevaccines, and the production of less efficacious drugs with poor pharmacokinetics. Unfortunately, in areas with endemic protozoan infections, antiparasitic drugs use and efficacy have been compromised by drug resistance. The development of resistance has been found to be associated with decreased drug uptake, the export of drugs from parasites, genetic modifications, loss of drug activity, and alteration of the drug target. Recently, the isolation and characterization of resistance-related genes and proteins have increased the knowledge about drug resistance greatly and provided a way forward for the identification of new drug candidates. In this chapter, our focus will be on the mode of action and mechanism of resistance development of those drugs used to treat protozoal infections in human including malaria, toxoplasmosis, trypanosomiasis, giardiasis, cystoisosporiasis, babesiosis, and leishmaniasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achan, J., Talisuna, A. O., Erhart, A., Yeka, A., Tibenderana, J. K., Baliraine, F. N., Rosenthal, P. J., & D’Alessandro, U. (2011). Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria. Malaria Journal, 10(1), 144–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akateh, C., Arnold, C. A., Benissan-Messan, D., Michaels, A., & Black, S. M. (2018). Cystoisospora belli gallbladder infection in a liver transplant donor. Case Report in Infectious Diseases, 2018, 1–5.

    Article  Google Scholar 

  • Alday, P. H., & Doggett, J. S. (2017). Drugs in development for toxoplasmosis: advances, challenges, and current status. Drug Desigen, Development and Therapy, 11, 273–293.

    Article  CAS  Google Scholar 

  • Alemayehu, B., & Alemayehu, M. (2017). Leishmaniasis: A review on parasite, vector and reservoir host. Health Science Journal, 11, 1–6.

    Article  Google Scholar 

  • Alker, A. P., Lim, P., Sem, R., Shah, N. K., Yi, P., Bouth, D. M., Tsuyuoka, R., Maguire, J. D., Fandeur, T., Ariey, F., Wongsrichanalai, C., & Meshnick, S. R. (2007). Pfmdr1 and in vivo resistance to artesunate-mefloquine in falciparum malaria on the cambodian-Thai border. The American Journal of Tropical Medicine and Hygiene, 76, 641–647.

    Article  CAS  PubMed  Google Scholar 

  • Allred, D. R., & Al-Khedery, B. (2006). Antigenic variation as an exploitable weakness of babesial parasites. Veterinary Parasitology, 138(1–2), 50–60.

    Article  CAS  PubMed  Google Scholar 

  • Almirall, P., Escobedo, A. A., Ayala, I., Alfonso, M., Salazar, Y., Canete, R., Cimerman, S., Galloso, M., Olivero, I., Robaina, M., & Tornés, K. (2011). Mebendazole compared with secnidazole in the treatment of adult giardiasis: A randomised, no-inferiority, open clinical trial. Journal of Parasitology Research, 2011, 1–6.

    Article  CAS  Google Scholar 

  • Alonso, P. L., Brown, G., Arevalo-Herrera, M., Binka, F., Chitnis, C., Collins, F., Doumbo, O. K., Greenwood, B., Hall, B. F., Levine, M. M., & Mendis, K. (2011). A research agenda to underpin malaria eradication. PLoS Medicine, 8(1), 1–8.

    Article  Google Scholar 

  • Amato, R., Pearson, R. D., Almagro-Garcia, J., Amaratunga, C., Lim, P., Suon, S., Sreng, S., Drury, E., Stalker, J., Miotto, O., & Fairhurst, R. M. (2018). Origins of the current outbreak of multidrug-resistant malaria in southeast Asia: A retrospective genetic study. The Lancet Infectious Diseases, 18(3), 337–345.

    Article  PubMed  PubMed Central  Google Scholar 

  • Antonovics, J., Wilson, A. J., Forbes, M. R., Haue, H. C., Kallio, E. R., Leggett, H. C., Longdon, B., Okamura, B., Sait, S. M., & Webster, J. P. (2017). The evolution of transmission mode. Philosophical Transactions of the Royal Society B-Biological Sciences, 372, 1–12.

    Article  Google Scholar 

  • Argüello-García, R., Cruz-Soto, M., Romero-Montoya, L., & Ortega- Pierres, G. (2009). In vitro resistance to 5-nitroimidazoles and benzimidazoles in Giardia duodenalis: Variability and variation in gene expression. Infection, Genetics and Evolution, 9, 1057–1064.

    Article  PubMed  CAS  Google Scholar 

  • Ashley, E. A., Pyae Phyo, A., & Woodrow, C. J. (2018). Malaria. The Lancet, 391(10130), 1608–1621.

    Article  Google Scholar 

  • Askling, H. H., Bruneel, F., Burchard, G., Castelli, F., Chiodini, P. L., Grobusch, M. P., Lopez-Vélez, R., Paul, M., Petersen, E., Popescu, C., & Ramharter, M. (2012). Management of imported malaria in Europe. Malaria Journal, 11(1), 328–342.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aspinall, T. V., Joynson, D. H. M., Guy, E., Hyde, J. E., & Sims, P. F. G. (2002). The molecular basis of sulfonamide resistance in Toxoplasma gondii and implications for the clinical management of toxoplasmosis. Journal of Infectious Diseases, 185, 1637–1643.

    Article  CAS  Google Scholar 

  • Babokhov, P., Sanyaolu, A. O., Oyibo, W. A., Fagbenro-Beyioku, A. F., & Iriemenam, N. C. (2013). A current analysis of chemotherapy strategies for the treatment of human African trypanosomiasis. Pathogens and Global Health, 107, 242–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baggish, A. L., & Hill, D. R. (2002). Antiparasitic agent atovaquone. Antimicrobiol Agents and Chemotherapy, 46(5), 1163–1173.

    Article  CAS  Google Scholar 

  • Baird, J. K. (2005). Effectiveness of antimalarial drugs. New England Journal of Medicine, 352(15), 1565–1577.

    Article  CAS  Google Scholar 

  • Baker, C. H., & Welburn, S. C. (2018). The Long Wait for a New Drug for Human African Trypanosomiasis. Trends in Parasitology, 34, 818–827.

    Article  PubMed  Google Scholar 

  • Baker, N., Glover, L., Munday, J. C., Andres, D. A., Barrett, M. P., de Koning, H. P., & Horn, D. (2012). Aquaglyceroporin 2 controls susceptibility to melarsoprol and pentamidine in African trypanosomes. Proceeding of the Natlional Acadamy of Sciences USA, 109, 10996–11001.

    Article  CAS  Google Scholar 

  • Banerjee, A., De, M., & Ali, N. (2011). Combination therapy with paromomycin-associated stearylamine-bearing liposomes cures experimental visceral leishmaniasis through Th1-biased immunomodulation. Antimicrobiol Agents and Chemotherapy, 55, 1661–1670.

    Article  CAS  Google Scholar 

  • Barrett, M. P. (2018). The elimination of human African trypanosomiasis is in sight: Report from the third WHO stakeholders meeting on elimination of gambiense human African trypanosomiasis. PLoS Neglected Tropical Diseases, 12, 1–4.

    Article  Google Scholar 

  • Barry, J. D., & Emery, D. L. (1984). Parasite development and host responses during the establishment of Trypanosoma brucei infection transmitted by tsetse fly. Parasitology, 88(1), 67–84.

    Article  PubMed  Google Scholar 

  • Barta, J. R., Schrenzel, M. D., Carreno, R., & Rideout, B. A. (2005). The genus Atoxoplasma (Garnham 1950) as a junior objective synonym of the genus Isospora (Schneider 1881) species infecting birds and resurrection of Cystoisospora (Frenkel 1977) as the correct genus for Isospora species infecting mammals. Journal of Parasitology, 91, 726–727.

    Article  CAS  Google Scholar 

  • Basselin, M., Denise, H., Coombs, G. H., & Barrett, M. P. (2002). Resistance to pentamidine in Leishmania mexicana involves exclusion of the drug from the mitochondrion. Antimicrobiol Agents and Chemotherapy, 46, 3731–3738.

    Article  CAS  Google Scholar 

  • Battle, K. E., Karhunen, M. S., Bhatt, S., Gething, P. W., Howes, R. E., Golding, N., Van Boeckel, T. P., Messina, J. P., Shanks, G. D., Smith, D. L., & Baird, J. K. (2014). Geographical variation in Plasmodium vivax relapse. Malaria Journal, 13(1), 1–16.

    Article  Google Scholar 

  • Becker, C. A. M., Malandrin, L., Larcher, T., Chauvin, A., Bischoff, E., & Bonnet, S. I. (2013). Validation of BdCCp2 as a marker for Babesia divergens sexual stages in ticks. Experimental Parasitology, 133, 51–56.

    Article  CAS  PubMed  Google Scholar 

  • Beech, R. N., Skuce, P., Bartley, D. J., Martin, R. J., Prichard, R. K., & Gilleard, J. S. (2011). Anthelmintic resistance: markers for resistance, or susceptibility? Parasitology, 138, 160–174.

    Article  CAS  PubMed  Google Scholar 

  • Benach, J. L., & Habicht, G. S. (1981). Clinical characteristics of human babesiosis. Journal of Infectious Diseases, 144, 1481.

    Article  Google Scholar 

  • Berg, M., Mannaert, A., Vanaerschot, M., Van der Auwera, G., & Dujardin, J. C. (2013). (Post-) Genomic approaches to tackle drug resistance in Leishmania. Parasitology, 140, 1492–1505.

    Article  CAS  PubMed  Google Scholar 

  • Bernard, Q., Jaulhac, B., & Boulanger, N. (2014). Smuggling across the border: how arthropod-borne pathogens evade and exploit the host defense system of the skin. Journal of Investigative Dermatology, 134(5), 1211–1219.

    Article  CAS  Google Scholar 

  • Bhandari, V., Sundar, S., Dujardin, J. C., & Salotra, P. (2014). Elucidation of cellular mechanisms involved in experimental paromomycin resistance in Leishmania donovani. Antimicrobial Agents and Chemotherapy, 58, 2580–2585.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Birth, D., Kao, W. C., & Hunte, C. (2014). Structural analysis of atovaquone-inhibited cytochrome bc1 complex reveals the molecular basis of antimalarial drug action. Nature Communications, 5, 1–11.

    Article  CAS  Google Scholar 

  • Bousema, J. T., Schneider, P., Gouagna, L. C., Drakeley, C. J., Tostmann, A., Houben, R., Githure, J. I., Ord, R., Sutherland, C. J., Omar, S. A., & Sauerwein, R. W. (2006). Moderate effect of artemisinin-based combination therapy on transmission of Plasmodium falciparum. Journal of Infectious Diseases, 193, 1151–1159.

    Article  CAS  Google Scholar 

  • Boyles, T. H., Black, J., Meintjes, G., & Mendelson, M. (2012). Failure to eradicate Isospora belli diarrhoea despite immune reconstitution in adults with HIV–a case series. PLoS ONE, 7(8), 1–4.

    Article  CAS  Google Scholar 

  • Bray, P. G., Barrett, M. P., Ward, S. A., & de Koning, H. P. (2003). Pentamidine uptake and resistance in pathogenic protozoa: Past, present and future. Trends in Parasitology, 19, 232–239.

    Article  CAS  PubMed  Google Scholar 

  • Buret, A. G. (2008). Pathophysiology of enteric infections with Giardia duodenalis. Parasite, 15, 261–265.

    Article  CAS  PubMed  Google Scholar 

  • Burrows, J. N., Chibale, K., & Wells, T. N. (2011). The state of the art in anti-malarial drug discovery and development. Current Topics in Medicinal Chemistry, 11, 1226–1254.

    Article  CAS  PubMed  Google Scholar 

  • Burza, S., Croft, S. L., & Boelaert, M. (2018). Leishmaniasis. Lancet, 392, 951–970.

    Article  PubMed  Google Scholar 

  • Buscher, P., Cecchi, G., Jamonneau, V., & Priotto, G. (2017). Human African trypanosomiasis. Lancet, 390, 2397–2409.

    Article  PubMed  Google Scholar 

  • Capela, R., Moreira, R., & Lopes, F. (2019). An overview of drug resistance in protozoal diseases. International Journal of Molecular Science, 20, 5748–5778.

    Article  CAS  Google Scholar 

  • Capper, M. J., O’Neill, P. M., Fisher, N., Strange, R. W., Moss, D., Ward, S. A., Berry, N. G., Lawrenson, A. S., Hasnain, S. S., Biagini, G. A., & Antonyuk, S. V. (2015). Antimalarial 4 (1H)-pyridones bind to the Qi site of cytochrome bc1. Proceedings of the National Academy of Sciences, 112(3), 755–760.

    Article  CAS  Google Scholar 

  • Chakravarty, J., & Sundar, S. (2010). Drug resistance in Leishmaniasis. Journal of Global Infectious Diseases, 2, 167–176.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chattopadhyay, R., Velmurugan, S., Chakiath, C., Andrews Donkor, L., Milhous, W., Barnwell, J. W., Collins, W. E., & Hoffman, S. L. (2010). Establishment of an in vitro assay for assessing the effects of drugs on the liver stages of Plasmodium vivax malaria. PLoS ONE, 5(12), 1–8.

    Article  CAS  Google Scholar 

  • Chavez, B., Cedillo-Rivera, R., & Martinez-Palomo, A. (1992). Giardia lamblia: Ultrastructural study of the in vitro effect of benzimidazoles. Journal of Protozoology, 39, 510–515.

    Article  CAS  Google Scholar 

  • Chawla, B., Jhingran, A., Panigrahi, A., Stuart, K. D., & Madhubala, R. (2011). Paromomycin affects translation and vesicle-mediated trafficking as revealed by proteomics of paromomycin-susceptible-resistant Leishmania donovani. PLoS ONE, 6(10), 1–12.

    Article  CAS  Google Scholar 

  • Coelho, A. C., Messier, N., Ouellette, M., & Cotrim, P. C. (2007). Role of the ABC transporter PRP1 (ABCC7) in pentamidine resistance in Leishmania amastigotes. Antimicrobial Agents and Chemotherapy, 51, 3030–3032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Combrinck, J. M., Mabotha, T. E., Ncokazi, K. K., Ambele, M. A., Taylor, D., Smith, P. J., Hoppe, H. C., & Egan, T. J. (2013). Insights into the role of heme in the mechanism of action of antimalarials. ACS Chemical Biology, 8(1), 133–137.

    Article  CAS  PubMed  Google Scholar 

  • Comin, C. E., & Santucci, M. (1994). Submicroscopic profile of Isospora belli enteritis in a patient with acquired immune deficiency syndrome. Ultrastructural Pathology, 18, 473–482.

    Article  CAS  PubMed  Google Scholar 

  • Commons, R. J., Simpson, J. A., Thriemer, K., Humphreys, G. S., Abreha, T., & Alemu, S. G. (2018). The effect of chloroquine dose and primaquine on Plasmodium vivax recurrence: A worldwide antimalarial resistance network systematic review and individual patient pooled meta-analysis. Lancet Infectious Diseases, 18, 1025–1034.

    Article  CAS  PubMed  Google Scholar 

  • Cooper, R. A., Hartwig, C. L., & Ferdig, M. T. (2005). pfcrt is more than the Plasmodium falciparum chloroquine resistance gene: A functional and evolutionary perspective. Acta Tropica, 94, 170–180.

    Article  CAS  PubMed  Google Scholar 

  • Corey, V. C., Lukens, A. K., Istvan, E. S., Lee, M. C. S., Franco, V., Magistrado, P., Coburn-Flynn, O., Sakata-Kato, T., Fuchs, O., Gnädig, N. F., Goldgof, G., Linares, M., Gomez-Lorenzo, M. G., De Cózar, C., Lafuente-Monasterio, M. J., Prats, S., Meister, S., Tanaseichuk, O., Wree, M., … Winzeler, E. A. (2016). A broad analysis of resistance development in the malaria parasite. Natural Communication, 7(1), 1–9.

    Google Scholar 

  • Cortazar, T. M., Coombs, G. H., & Walker, J. (2007). Leishmania panamensis: Comparative inhibition of nuclear DNA topoisomerase II enzymes from promastigotes and human macrophages reveals anti-parasite selectivity of fluoroquinolones, flavonoids and pentamidine. Experimental Parasitology, 116, 475–482.

    Article  CAS  PubMed  Google Scholar 

  • Cosar, C., & Julou, L. (1959). The activity of 1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole (R. P. 8823) against experimental Trichomonas vaginalis infections. Annales De L’institut Pasteur (paris), 96, 238–421.

    CAS  Google Scholar 

  • Cowman, A. F., Galatis, D., & Thompson, J. K. (1994). Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfmdr1 gene and cross-resistance to halofantrine and quinine. Proceeding of National Acadamy of Science USA, 91(3), 1143–1147.

    Article  CAS  Google Scholar 

  • Cowman, A. F., Healer, J., Marapana, D., & Marsh, K. (2016). Malaria: Biology and disease. Cell, 167(3), 610–624.

    Article  CAS  PubMed  Google Scholar 

  • Crofts, A. R. (2004). The cytochrome bc1 complex: Function in the context of structure. Annual Review of Physiology, 66, 689–733.

    Article  CAS  PubMed  Google Scholar 

  • Cui, L., Mharakurwa, S., Ndiaye, D., Rathod, P. K., & Rosenthal, P. J. (2015). Antimalarial drug resistance: Literature review and activities and findings of the ICEMR network. American Journal of Tropical Medicine and Hygiene, 93(3), 57–68.

    Article  CAS  Google Scholar 

  • Curd, F. H. S., Davey, D. G., & Rose, F. L. (1945). Studies on synthetic antimalarial drugs. Annual Tropical Medicine Parasitology, 39, 208–216.

    Article  CAS  Google Scholar 

  • Dan, M., Wang, A. L., & Wang, C. C. (2000). Inhibition of pyruvate-ferredoxin oxidoreductase gene expression in Giardia lamblia by a virusmediated hammerhead ribozyme. Molecular Microbiology, 36, 447–456.

    Article  CAS  PubMed  Google Scholar 

  • De Hovitz, J. A., Pape, J. W., Boncy, M., & Johnson, W. D. (1986). Clinical manifestations and therapy of Isospora belli infection in patients with the acquired immunodeficiency syndrome. New England Journal of Medicine, 315(2), 87–90.

    Article  Google Scholar 

  • De Souza, W., Attias, M., & Rodrigues, J. C. F. (2009). Particularities of mitochondrial structure in parasitic protists (Apicomplexa and Kinetoplastida). International Journal of Biochemistry and Cell Biology, 41, 2069–2080.

    Article  PubMed  CAS  Google Scholar 

  • de Veer, M. J., Curtis, J. M., Baldwin, T. M., DiDonato, J. A., Sexton, A., McConville, M. J., et al. (2003) MyD88 isessential for clearance of Leishmania major: Possible role for lipophosphoglycan and toll-likereceptor 2 signaling. European Journal of Immunology, 33, 2822–2831. [PubMed:14515266].

    Google Scholar 

  • Dembele, L., Geg, A., Zeeman, A. M., Franetich, J. F., Silvie, O., Rametti, A., Le Grand, R., Dereuddre-Bosquet, N., Sauerwein, R., van Gemert, G. J., Vaillant, J. C., Thomas, A. W., Snounou, G., Kocken, C. H., & Mazier, D. (2011). Towards an in vitro model of Plasmodium hypnozoites suitable for drug discovery. PLoS ONE, 6, 1–7.

    Article  CAS  Google Scholar 

  • Dhiman, S. (2019). Are malaria elimination efforts on right track? An analysis of gains achieved and challenges ahead. Infectious Diseases of Poverty, 8(1), 1–19.

    Google Scholar 

  • Dijanic, C., Nickerson, J., Shakya, S., Dijanic, A., & Fabbri, M. (2018). Relapsing malaria: A case report of primaquine resistance. Case Reports in Infectious Diseases, 2018, 1–3.

    Article  Google Scholar 

  • Dionisio, D., Sterrantino, G., Meli, M., Leoncini, F., Orsi, A., & Nicoletti, P. (1996). Treatment of isosporiasis with combined albendazole and ornidazole in patients with AIDS. AIDS, 10(11), 1301–1302.

    Article  CAS  PubMed  Google Scholar 

  • Diro, E., Lynen, L., Ritmeijer, K., Boelaert, M., Hailu, A., & van Griensven, J. (2014). Visceral Leishmaniasis and HIV coinfection in East Africa. PLoS Neglectd Tropical Diseases, 8, 10.

    Google Scholar 

  • Djimde, A., Doumbo, O. K., Cortese, J. F., Kayentao, K., Doumbo, S., Diourte, Y., Dicko, A., Su, X. Z., Nomura, T., Fidock, D. A., Wellems, T. E., Plowe, C. V., & Coulibaly, D. (2001). A molecular marker for chloroquine-resistant falciparum malaria. New England Journal of Medicine, 344, 257–263.

    Article  CAS  Google Scholar 

  • Doggett, J. S., Nilsen, A., Forquer, I., Wegmann, K. W., Jones-Brando, L., Yolken, R. H., Bordón, C., Charman, S. A., Katneni, K., Schultz, T., & Burrows, J. N. (2012). Endochin-like quinolones are highly efficacious against acute and latent experimental toxoplasmosis. Proceedings of the National Academy of Sciences, 109(39), 15936–15941.

    Article  CAS  Google Scholar 

  • Donald, R., & Roos, D. S. (1993). Stable molecular transformation of Toxoplasma gondii: A selectable dihydrofolate reductase-thymidylate synthase marker based on drug-resistance mutations in malaria. Proceding of the National Acadamy of Sciences USA, 90, 11703–11707.

    Article  CAS  Google Scholar 

  • Dubey, J. P. (2018). A review of Cystoisospora felis and C. revolta-induced coccidiosis in cats and public health. Veterinary Parasitology, 263, 34–48.

    Article  PubMed  Google Scholar 

  • Dubey, J., & Almeria, S. (2019). Cystoisospora belli infections in humans: The past 100 years. Parasitology, 146(12), 1490–1527.

    Article  CAS  PubMed  Google Scholar 

  • Dunn, L. A., Burgess, A. G., Krauer, K. G., Eckmann, L., Vanelle, P., Crozet, M. D., Gillin, F. D., Upcroft, P., & Upcroft, J. A. (2010). A new-generation 5-nitroimidazole can induce highly metronidazole-resistant Giardia lamblia in vitro. International Journal of Antimicrobial Agents, 36(1), 37–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eastman, R. T., & Fidock, D. A. (2009). Artemisinin-based combination therapies: A vital tool in efforts to eliminate malaria. Nature Reviews Microbiology, 7, 864–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebstie, Y. A., Abay, S. M., Tadesse, W. T., & Ejigu, D. A. (2016). Tafenoquine and its potential in the treatment and relapse prevention of Plasmodium vivax malaria: The evidence to date. Drug Design, Development and Therapy, 10, 2387–2399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckstein-Ludwig, U., Webb, R. J., Van Goethem, I. D., East, J. M., Lee, A. G., Kimura, M., O’Neill, P. M., Bray, P. G., Ward, S. A., & Krishna, S. (2003). Artemisinins target the SERCA of Plasmodium falciparum. Nature, 424, 957–961.

    Article  CAS  PubMed  Google Scholar 

  • Edlind, T. D., Hang, T. L., & Chakraborty, P. R. (1990). Activity of the anthelmintic benzimidazoles against Giardia lamblia in vitro. Journal of Infectious Diseases, 162, 1408–1411.

    Article  CAS  Google Scholar 

  • Escobedo, A. A., & Cimerman, S. (2007). Giardiasis: A pharmacotherapy review. Expert Opinion on Pharmacotherapy, 8, 1885–1902.

    Article  CAS  PubMed  Google Scholar 

  • Esvan, R., Suleková, L. F., Gabrielli, S., Biliotti, E., Palazzo, D., Spaziante, M., & Taliani, G. (2018). Severe diarrhoea due to Cystoisospora belli infection in a Good syndrome patient. Parasitology International, 67, 413–414.

    Article  PubMed  Google Scholar 

  • Fairclough, R. (1962). In Proceedings 9th meeting of the international scientific council for trypanosomiasis research; commision for technical cooperation in Africa, Lagos, CCTA Pub. No. 88: Conakrt, Guinera, (pp 81–86).

    Google Scholar 

  • Fairlamb, A. H., & Horn, D. (2018). Melarsoprol resistance in African trypanosomiasis. Trends in Parasitology, 34, 481–492.

    Article  CAS  PubMed  Google Scholar 

  • Farthing, M. J. (1997). Giardiasis. Journal of Pediatric Gastroenterology and Nutrition, 24, 79–88.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez, M. M., Malchiodi, E. L., & Algranati, I. D. (2011). Differential effects of paromomycin on ribosomes of Leishmania mexicana and mammalian cells. Antimicrobioal Agents and Chemotherapy, 55, 86–93.

    Article  CAS  Google Scholar 

  • Ferreira, I. D., Lopes, D., Martinelli, A., Ferreira, C., Do Rosario, V. E., & Cravo, P. (2007). In vitro assessment of artesunate, artemether and amodiaquine susceptibility and molecular analysis of putative resistance-associated mutations of Plasmodium falciparum from Sao Tome and principe. Tropical Medicine and International Health, 12, 353–362.

    Article  CAS  PubMed  Google Scholar 

  • Fidock, D. A., Nomura, T., Talley, A. K., Cooper, R. A., Dzekunov, S. M., Ferdig, M. T., Ursos, L. M., Sidhu, A. B., Naude, B., Deitsch, K. W., Su, X. Z., Wootton, J. C., Roepe, P. D., & Wellems, T. E. (2000). Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Molecular Cell, 6, 861–871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher, S. M., Stark, D., Harkness, J., & Ellisa, J. (2012). Enteric protozoa in the developed world: A public health perspective. Clinical Microbiology Review, 25, 420–449.

    Article  Google Scholar 

  • Franco, J., Scarone, L., & Comini, M. A. (2018). Drugs and drug resistance in African and American trypanosomiasis. In M. Botta, (Eds.), Neglected diseases: Extensive space for modern drug discovery, (pp. 97–133). Academic Press Inc.

    Google Scholar 

  • French, J. M., Whitby, J. L., & Whitfield, A. G. W. (1964). Steatorrhea in a man infected with coccidiosis (Isospora belli). Gastroenterology, 47, 642–648.

    Article  CAS  PubMed  Google Scholar 

  • Fry, M., & Pudney, M. (1992). Site of action of the antimalarial hydroxynaphthoquinone, 2-[trans-4-(4’-chlorophenyl) cyclohexyl]-3-hydroxy-1,4-naphthoquinone (566C80). Biochemical Pharmacology, 43, 1545–1553.

    Article  CAS  PubMed  Google Scholar 

  • Gajurel, K., Gomez, C., Dhakal, R., Vogel, H., & Montoya, J. (2016). Failure of primary atovaquone prophylaxis for prevention of toxoplasmosis in hematopoietic cell transplant recipients. Transplant Infectious Diseses, 18, 446–452.

    Article  CAS  Google Scholar 

  • Garcia-Salcedo, J. A., Unciti-Broceta, J. D., Valverde-Pozo, J., & Soriano, M. (2016). New approaches to overcome transport related drug resistance in trypanosomatid parasites. Frontiers in Pharmacology, 7, 351–364.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glasner, P. D., Silveira, C., Kruszon-Moran, D., Martins, M. C., Burnier, M., Jr., Silveira, S., Camargo, M. E., Nussenblatt, R. B., Kaslow, R. A., & Belfort, R., Jr. (1992). An unusually high prevalence of ocular toxoplasmosis in southern Brazil. American Journal of Ophthalmology, 114(2), 136–144.

    Article  CAS  PubMed  Google Scholar 

  • Graf, F. E., Baker, N., Munday, J. C., De Koning, H. P., Horn, D., & Mäser, P. (2015). Chimerization at the AQP2–AQP3 locus is the genetic basis of melarsoprol–pentamidine cross-resistance in clinical Trypanosoma brucei gambiense isolates. International Journal for Parasitology: Drugs and Drug Resistance, 5(2), 65–68.

    PubMed  PubMed Central  Google Scholar 

  • Gregson, A., & Plowe, C. V. (2005). Mechanisms of resistance of malaria parasites to antifolates. Pharmacology Review, 57, 117–145.

    Article  CAS  Google Scholar 

  • Guerra, C. A., Howes, R. E., Patil, A. P., Gething, P. W., Van Boeckel, T. P., Temperley, W. H., Kabaria, C. W., Tatem, A. J., Manh, B. H., Elyazar, I. R., Baird, J. K., Snow, R. W., & Hay, S. I. (2010). The international limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Neglected Tropical Diseases, 4(8), 1–11.

    Article  Google Scholar 

  • Gupta, G., Oghumu, S., & Satoskar, A. R. (2013). Mechanisms of immune evasion in leishmaniasis. In Advances in applied microbiology (Vol. 82, pp. 155–184). Academic Press.

    Google Scholar 

  • Haider, M., Sharma, A., Dogra, V., & Mishra, B. (2013). Isospora spp. in chronic diarrhea: A case report. Journal of Pharmacy and Bioallied Scienes, 5(4), 327–328.

    Google Scholar 

  • Halliez, M. C., & Buret, A. G. (2013). Extra-intestinal and long-term consequences of Giardia duodenalis infections. World Journal of Gastroenterology, 19, 8974–8985.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamšíková, Z., Kazimírová, M., Haruštiaková, D., Mahríková, L., Slovák, M., Berthová, L., Kocianová, E., & Schnittger, L. (2016). Babesia spp. in ticks and wildlife in different habitat types of Slovakia. Parasites and Vectors, 9, 292.

    Google Scholar 

  • Hasan, M., Bishburg, E., & Nagarakanti, S. (2017). Recurrent Cystoisospora belli in a patient with HTLV-1 infection. Idcases, 10, 122.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heidari-Kharaji, M., Taheri, T., Doroud, D., Habibzadeh, S., Badirzadeh, A., & Rafati, S. (2016). Enhanced paromomycin efficacy by solid lipid nanoparticle formulation against Leishmania in mice model. Parasite Immunology, 38, 599–608.

    Article  CAS  PubMed  Google Scholar 

  • Hendrickx, S., Van den Kerkhof, M., Mabille, D., Cos, P., Delputte, P., Maes, L., & Caljon, G. (2017). Combined treatment of miltefosine and paromomycin delays the onset of experimental drug resistance in Leishmania infantum. PLoS Neglected Tropical Disease, 11, 1–10.

    Article  CAS  Google Scholar 

  • Hisaeda, H., Yasutomo, K., & Himeno, K. (2005). Malaria: Immune evasion by parasites. The International Journal of Biochemistry and Cell Biology, 37(4), 700–706.

    Article  CAS  PubMed  Google Scholar 

  • Hobbs, C., & Duffy, P. (2011). Drugs for malaria: something old, something new, something borrowed. F1000 Biology Reports, 3, 1–9.

    Google Scholar 

  • Holberton, D. V., & Ward, A. P. (1981). Isolation of the cytoskeleton from Giardia. Tubulin and a low-molecular-weight protein associated with microribbon structures. Journal of Cellular Sciences, 47, 139–166.

    Article  CAS  Google Scholar 

  • Hoover, D. L., Berger, M., Nacy, C. A., Hockmeyer, W. T., & Meltzer, M. S. (1984). Killing of Leishmania tropica amastigotes by factors in normal human serum. The Journal of Immunology, 132(2), 893–897.

    Article  CAS  PubMed  Google Scholar 

  • Howe, D. K., & Sibley, L. D. (1995). Toxoplasma gondii comprises three clonal lineages: Correlation of parasite genotype with human disease. Journal of Infectious Diseases, 172, 1561–1566.

    Article  CAS  Google Scholar 

  • Howes, R. E., Battle, K. E., Mendis, K. N., Smith, D. L., Cibulskis, R. E., Baird, J. K., & Hay, S. I. (2016). Global epidemiology of Plasmodium vivax. The American Journal of Tropical Medicine and Hygiene, 95(6), 15–34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hudson, A. T., Dickins, M., Ginger, C. D., Gutteridge, W. E., Holdich, T., Hutchinson, D. B. A., Pudney, M., Randall, A. W., & Latter, V. S. (1991). 566C80: A potent broad-spectrum anti-infective agent with activity against malaria and oppor- tunistic infections in AIDS patients. Drugs in Experimental Clinical Research, 17, 427–435.

    CAS  Google Scholar 

  • Hwang, S. J., Yamasaki, M., Nakamura, K., Sasaki, N., Murakami, M., Rajapakshage, B. K. W., Ohta, H., Maede, Y., & Takiguchi, M. (2010). Reduced transcript levels of the heat shock protein 70 gene in diminazene aceturate-resistant Babesia gibsoni variants under low concentrations of diminazene aceturate. Japanese Journal of Veterinary Research, 58(4), 155–164.

    Google Scholar 

  • Imwong, M., Dondorp, A. M., Nosten, F., Yi, P., Mungthin, M., Hanchana, S., Das, D., Phyo, A. P., Lwin, K. M., Pukrittayakamee, S., Lee, S. J., Saisung, S., Koecharoen, K., Nguon, C., Day, N. P., Socheat, D., & White, N. J. (2010). Exploring the contribution of candidate genes to artemisinin resistance in Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 54(7), 2886–2892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imwong, M., Pukrittayakamee, S., Pongtavornpinyo, W., Nakeesathit, S., Nair, S., Newton, P., Nosten, F., Anderson, T. J., Dondorp, A., Day, N. P., & White, N. J. (2008). Gene amplification of the multidrug resistance 1 gene of Plasmodium vivax isolates from Thailand, Laos, and Myanmar. Antimicrobial Agents and Chemotherapy, 52(7), 2657–2659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imwong, M., Suwannasin, K., Kunasol, C., Sutawong, K., Mayxay, M., Rekol, H., Smithuis, F. M., Hlaing, T. M., Tun, K. M., van der Pluijm, R. W., & Tripura, R. (2017). The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: A molecular epidemiology observational study. The Lancet Infectious Diseases, 17(5), 491–497.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jambou, R., Legrand, E., Niang, M., Khim, N., Lim, P., Volney, B., Ekala, M. T., Bouchier, C., Esterre, P., Fandeur, T., & Mercereau-Puijalon, O. (2005). Resistance of Plasmodium falciparum field isolates to in vitro artemether and point mutations of the SERCAtype PfATPase6. Lancet, 366, 1960–1963.

    Article  CAS  PubMed  Google Scholar 

  • James, D. M., & Giles, H. M. (1985). Pharmacology and usage. In J. W. Sons (Ed.).

    Google Scholar 

  • Jeacock, L., Baker, N., Wiedemar, N., Maser, P., & Horn, D. (2017). Aquaglyceroporin-null trypanosomes display glycerol transport defects and respiratory-inhibitor sensitivity. PLoS Pathology, 13(3), 1–16.

    Article  CAS  Google Scholar 

  • Jhingran, A., Chawla, B., Saxena, S., Barrett, M. P., & Madhubala, R. (2009). Paromomycin: Uptake and resistance in Leishmania donovani. Molecular Biochemistry and Parasitology, 164, 111–117.

    Article  CAS  Google Scholar 

  • Jiménez-Cardoso, E., Eligio-García, L., Cortés-Campos, A., Flores- Luna, A., Valencia-Mayoral, P., & Lozada-Chávez, I. (2009). Changes in betagiardin sequence of Giardia intestinalis sensitive and resistant to albendazole strains. Parasitology Research, 105, 25–33.

    Article  PubMed  Google Scholar 

  • Jones, M. K., & Good, M. F. (2006). Malaria parasites up close. Natural Medicine, 2, 170–171.

    Article  CAS  Google Scholar 

  • Jongwutiwes, S., Putaporntip, C., Charoenkorn, M., Iwasaki, T., & Endo, T. (2007). Morphologic and molecular characterization of Isospora belli oocysts from patients in Thailand. American Journal of Tropical Medicine and Hygiene, 77, 107–112.

    Article  CAS  Google Scholar 

  • Kennedy, P. G. E., & Rodgers, J. (2019). Clinical and neuropathogenetic aspects of human African trypanosomiasis. Frontier Immunology, 10, 11.

    CAS  Google Scholar 

  • Kessl, J. J., Lange, B. B., Merbitz-Zahradnik, T., Zwicker, K., Hill, P., Meunier, B., Palsdottir, H., Hunte, C., Meshnick, S., & Trumpower, B. L. (2003). Molecular basis for atovaquone binding to the cytochrome bc1 complex. Journal of Biological Chemistry, 278(33), 31312–31318.

    Article  CAS  Google Scholar 

  • Khan, W., Sharma, S. S., & Kumar, N. (2013). Bioanalytical method development, pharmacokinetics, and toxicity studies of paromomycin and paromomycin loaded in albumin microspheres. Drug Test and Analysis, 5, 453–460.

    Article  CAS  Google Scholar 

  • Krause, P. J., Lepore, T., Sikand, V. K., Gadbaw, J., Jr., Burke, G., Telford, S. R., Brassard, P., Pearl, D., Azlanzadeh, J., Christianson, D., McGrath, D., & Spielman, A. (2000). Atovaquone and azithromycin for the treatment of babesiosis. The New England Journal of Medicine, 343(20), 1454–1458.

    Article  CAS  PubMed  Google Scholar 

  • Kremsner, P. G., & Krishna, S. (2004). Antimalarial combinations. Lancet, 364(9430), 285–294.

    Article  CAS  PubMed  Google Scholar 

  • Kropf, C., Debache, K., Rampa, C., Barna, F., Schorer, M., Stephens, C. E., Ismail, M. A., Boykin, D. W., & Hemphill, A. (2012). The adaptive potential of a survival artist: Characterization of the in vitro interactions of Toxoplasma gondii tachyzoites with di-cationic compounds in human fibroblast cell cultures. Parasitology, 139(2), 208–220.

    Article  CAS  PubMed  Google Scholar 

  • Kuttler, K. L. (1981). Babesiosis. In M. Ristic, J. P. Keire, (Eds.), (p. 25). Academic Press.

    Google Scholar 

  • Lakshmanan, V., Bray, P. G., Verdier-Pinard, D., Johnson, D. J., Horrocks, P., Muhle, R. A., Alakpa, G. E., Hughes, R. H., Ward, S. A., Krogstad, D. J., Sidhu, A. B., & Fidock, D. A. (2005). A critical role for PfCRT K76T in Plasmodium falciparum verapamil-reversible chloroquine resistance. The EMBO JOurnal, 24, 2294–2305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langhorne, J., Buffet, P., Galinski, M., Good, M., Harty, J., Leroy, D., Mota, M. M., Pasini, E., Renia, L., Riley, E., Stins, M., & Duffy, P. (2011). The relevance of non-human primate and rodent malaria models for humans. Malaria Journal, 10(1), 1–4.

    Article  Google Scholar 

  • Lawres, L. A., Garg, A., Kumar, V., Bruzual, I., Forquer, I. P., Renard, I., Virji, A. Z., Boulard, P., Rodriguez, E. X., Allen, A. J., & Pou, S. (2016). Radical cure of experimental babesiosis in immunodeficient mice using a combination of an endochin-like quinolone and atovaquone. Journal of Experimental Medicine, 213(7), 1307–1318.

    Article  CAS  Google Scholar 

  • Lee, K. S., Divis, P. C., Zakaria, S. K., Matusop, A., Julin, R. A., Conway, D. J., Cox-Singh, J., & Singh, B. (2011). Plasmodium knowlesi: Reservoir hosts and tracking the emergence in humans and macaques. PLoS Pathogens, 7(4), 1–11.

    Article  CAS  Google Scholar 

  • Légaré, D., & Ouellette, M. (2017). Drug resistance in leishmania. In M. B. Gotte, A. Matlashewski, G. Wainberg, A. Mark & S. Donald, (Eds.), Handbook of antimicrobial resistance, (pp. 313–341). Springer.

    Google Scholar 

  • Leitsch, D. (2015). Drug resistance in the microaerophilic parasite Giardia lamblia. Current Tropical Medicinal Report, 2, 128–135.

    Article  Google Scholar 

  • Leitsch, D., Burgess, A. G., Dunn, L. A., Krauer, K. G., Tan, K., Duchêne, M., Upcroft, P., Eckmann, L., & Upcroft, J. A. (2011). Pyruvate: ferredoxin oxidoreductase and thioredoxin reductase are involved in 5-nitroimidazole activation while flavin metabolism is linked to 5-nitroimidazole resistance in Giardia lamblia. Journal of Antimicrobial Chemotherapy, 66(8), 1756–1765.

    Article  CAS  PubMed Central  Google Scholar 

  • Leitsch, D., Kolarich, D., Binder, M., Stadlmann, J., Altmann, F., & Duchêne, M. (2009). Trichomonas vaginalis: metronidazole and other nitroimidazole drugs are reduced by the flavin enzyme thioredoxin reductase and disrupt the cellular redox system. Implications for nitroimidazole toxicity and resistance. Molecular Microbiology, 72, 518–536.

    Article  CAS  PubMed  Google Scholar 

  • Leitsch, D., Schlosser, S., Burgess, A., & Duchêne, M. (2012). Nitroimidazole drugs vary in their mode of action in the human parasite Giardia lamblia. Internattional Journal of Parasitolgical Drugs and Drug Resistance, 2, 166–170.

    Article  CAS  Google Scholar 

  • Lemée, V., Zaharia, I., Nevez, G., Rabodonirina, M., Brasseur, P., Ballet, J. J., & Favennec, L. (2000). Metronidazole and albendazole susceptibility of 11 clinical isolates of Giardia duodenalis from France. Journal of Antimicrobial Chemotherapy, 46(5), 819–821.

    Article  Google Scholar 

  • Lemieux, J. E., Tran, A. D., Freimark, L., Schaffner, S. F., Goethert, H., Andersen, K. G., Bazner, S., Li, A., McGrath, G., Sloan, L., & Vannier, E. (2016). A global map of genetic diversity in Babesia microti reveals strong population structure and identifies variants associated with clinical relapse. Nature Microbiology, 1(7), 1–7.

    Article  CAS  Google Scholar 

  • Levine, N.D. 1973. Protozoan parasites of domestic animals and of man, (2nd edn, pp. 1–406). Burgess.

    Google Scholar 

  • Lima, T. S., & Lodoen, M. B. (2019). Mechanisms of human innate immune evasion by Toxoplasma gondii. Frontiers in Cellular and Infection Microbiology, 9, 103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindquist, S. (1986). The heat-shock response. Annual Review of Biochemistry, 55, 1151–1191.

    Article  CAS  PubMed  Google Scholar 

  • Lindsay, D. S., Houk, A. E., Mitchell, S. M., & Dubey, J. P. (2014). Developmental biology of Cystoisospora (Apicomplexa: Sarcocystidae) monozoic tissue cysts. Journal of Parasitology, 100, 392–398.

    Article  Google Scholar 

  • Liu, S. M., Brown, D. M., O’Donoghue, P., Upcroft, P., & Upcroft, J. A. (2000). Ferredoxin involvement in metronidazole resistance of Giardia duodenalis. Molecular Biochemistry and Parasitology, 108, 137–140.

    Article  CAS  Google Scholar 

  • Lumb, V., Das, M. K., Singh, N., Dev, V., Khan, W., & Sharma, Y. D. (2011). Multiple origins of Plasmodium falciparum dihydropteroate synthetase mutant alleles associated with sulfadoxine resistance in India. Antimicrobial Agents and Chemotherapy, 55, 2813–2817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald, L. M., Armson, A., Thompson, A. R., & Reynoldson, J. A. (2004). Characterisation of benzimidazole binding with recombinant tubulin from Giardia duodenalis, Encephalitozoon intestinalis, and Cryptosporidium parvum. Molecular Biochemistry and Parasitology, 138, 89–96.

    Article  CAS  Google Scholar 

  • Maltezou, H. C. (2010). Drug resistance in visceral Leishmaniasis. Journal of Biomedicine and Biotechnology, 2010, 1–8.

    Article  CAS  Google Scholar 

  • Marathe, A., & Parikh, K. (2013). Severe diarrhoea due to Cystoisospora belli in renal transplant patient on immunosuppressive drugs. Indian Journal of Medicine and Microbiology, 31, 185–187.

    CAS  Google Scholar 

  • Marcsisin, S. R., Reichard, G., & Pybus, B. S. (2016). Primaquine pharmacology in the context of CYP 2D6 pharmacogenomics: current state of the art. Pharmacology and Therapeutics, 161, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Martins, T. M., Domingos, A., Berry, C., & Wyatt, D. M. (2006). The activity and inhibition of the food vacuole plasmepsin from the rodent malaria parasite Plasmodium chabaudi. Acta Tropica, 97(2), 212–218.

    Article  CAS  PubMed  Google Scholar 

  • Matsuu, A., Miyamoto, K., Ikadai, H., Okano, S., & Higuchi, S. (2006). Short report: cloning of the Babesia gibsoni cytochrome b gene and isolation of three single nucleotide polymorphisms from parasites present after atovaquone treatment. American Journal of Tropical Medicine and Hygiene, 74, 593–597.

    Article  CAS  Google Scholar 

  • Mayers, D. L., Sobel, J. D., Ouellette, M., Kaye, K. S., & Marchaim, D. (2017). Bacterial genotyping drug resistance assays. In A. Huletsky, & M. G. Bergeron, (Eds.), Antimicrobial drug resistance: Clinical and epidemiological aspects, (2nd Edn, p. 85) Springer International Switzerland.

    Google Scholar 

  • Mbengue, A., Bhattacharjee, S., Pandharkar, T., Liu, H., Estiu, G., Stahelin, R. V., Rizk, S. S., Njimoh, D. L., Ryan, Y., Chotivanich, K., & Nguon, C. (2015). A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature, 520(7549), 683–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McFadden, D. C., Camps, M., & Boothroyd, J. C. (2001). Resistance as a tool in the study of old and new drug targets in Toxoplasma. Drug Resisttance Updates, 4, 79–84.

    Article  CAS  Google Scholar 

  • McFadden, D. C., Tomavo, S., Berry, E. A., & Boothroyd, J. C. (2000). Characterization of cytochrome b from Toxoplasma gondii and Qo domain mutations as a mechanism of atovaquone-resistance. Molecual Biochemistry and Parasitology, 108, 1–12.

    Article  CAS  Google Scholar 

  • McLeod, R., Boyer, K., Karrison, T., Kasza, K., Swisher, C., Roizen, N., Jalbrzikowski, J., Remington, J., Heydemann, P., Noble, A. G., & Mets, M. (2006). Outcome of treatment for congenital toxoplasmosis, 1981–2004: The national collaborative Chicago-based, congenital toxoplasmosis study. Clinical Infectious Diseases, 42(10), 1383–1394.

    Article  PubMed  Google Scholar 

  • Meneceur, P., Bouldouyre, M. A., Aubert, D., Villena, I., Menotti, J., Sauvage, V., Garin, J. F., & Derouin, F. (2008). In vitro susceptibility of various genotypic strains of Toxoplasma gondii to pyrimethamine, sulfadiazine, and atovaquone. Antimicrobial Agents and Chemotherapy, 52(4), 1269–1277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi-Ichi, F., Miyadera, H., Kobayashi, T., Takamiya, S., Waki, S., Iwata, S., Shibata, S., & Kita, K. (2005). Parasite mitochondria as a target of chemotherapy: Inhibitory effect of licochalcone A on the Plasmodium falciparum respiratory chain. Annals of the New York Academy of Sciences, 1056, 46–54.

    Article  CAS  PubMed  Google Scholar 

  • Millar, S. B., & Cox-Singh, J. (2015). Human infections with Plasmodium knowlesi-zoonotic malaria. Clinical Microbiological Infections, 7, 640–648.

    Article  Google Scholar 

  • Mogi, T., & Kita, K. (2009). Identification of mitochondrial complex II subunits SDH3 and SDH4 and ATP synthase subunits a and b in Plasmodium spp. Mitochondrion, 9(6), 443–453.

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi, M., Ansari-Moghaddam, A., Raiesi, A., Rakhshani, F., Nikpour, F., & Haghdost, A. (2011). Baseline results of the first malaria indicator survey in Iran at household level. Malaria Journal, 10, 1–6.

    Article  Google Scholar 

  • Mok, S., Ashley, E. A., Ferreira, P. E., Zhu, L., Lin, Z., Yeo, T., Chotivanich, K., Imwong, M., Pukrittayakamee, S., Dhorda, M., & Nguon, C. (2015). Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science, 347(6220), 431–435.

    Article  CAS  PubMed  Google Scholar 

  • Montazeri, M., Daryani, A., Ebrahimzadeh, M., Ahmadpour, E., Sharif, M., & Sarvi, S. (2015). Effect of propranolol alone and in combination with pyrimethamine on acute murine toxoplasmosis. Jundishapur Joirnal of Microbiology, 8, 1–5.

    Google Scholar 

  • Montazeri, M., Mehrzadi, S., Sharif, M., Sarvi, S., Shahdin, S., & Daryani, A. (2018). Activities of anti-Toxoplasma drugs and compounds against tissue cysts in the last three decades (1987 to 2017), a systematic review. Parasitology Research, 117, 3045–3057.

    Article  PubMed  Google Scholar 

  • Montoya, J. G., & Liesenfeld, O. (2004). Toxoplasmosis. Lancet, 363, 1965–1976.

    Article  CAS  PubMed  Google Scholar 

  • Monzote, L., & Siddiq, A. (2011). Drug development to protozoan diseases. Open Medicine and Chemistry Journal, 5, 1–3.

    Article  Google Scholar 

  • Mørch, K., Hanevik, K., Robertson, L. J., Strand, E. A., & Langeland, N. (2008). Treatment-ladder and genetic characterisation of parasites in refractory giardiasis after an outbreak in Norway. Journal of Infectious Diseases, 56, 268–273.

    Google Scholar 

  • Mudholkar, V. G., & Namey, R. D. (2010). Heavy infestation of Isospora belli causing severe watery diarrhea. Indian Journal of Pathology and Microbiology, 53(4), 824–825.

    Article  PubMed  Google Scholar 

  • Müller, J., Schildknecht, P., & Müller, N. (2013). Metabolism of nitro drugs metronidazole and nitazoxanide in Giardia lamblia: characterization of a novel nitroreductase (GlNR2). Journal of Antimicrobres and Chemotherapy, 68, 1781–1789.

    Article  CAS  Google Scholar 

  • Müller, J., Wastling, J., Sanderson, S., Müller, N., & Hemphill, A. (2007). A novel Giardia lamblia nitroreductase, GlNR1, interacts with nitazoxanide and other thiazolides. Antimicrobial Agents and Chemotherapy, 51, 1979–1986.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muñoz, J., Rojo-Marcos, G., Ramírez-Olivencia, G., Salas-Coronas, J., Treviño, B., Arellano, J. L. P., Torrús, D., Vilches, M. J. M., Ramos, J. M., Alegría, I., & López-Vélez, R. (2015). Diagnóstico y tratamiento de la malaria importada en España: Recomendaciones del grupo de trabajo de malaria de la sociedad Española de medicina tropical y salud internacional (SEMTSI). Enfermedades Infecciosas y Microbiología Clínica, 33(6), 1–13.

    Article  Google Scholar 

  • Murphy, A. D., & Lang-Unnasch, N. (1999). Alternative oxidase inhibitors potentiate the activity of atovaquone against Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 43(3), 651–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musey, K. L., Chidiac, C., Beaucaire, G., Houriez, S., & Fourrier, A. (1988). Effectiveness of roxithromycin for treating Isospora belli infection. Journal of Infectious Diseases, 158(3), 646.

    Article  CAS  Google Scholar 

  • Nagle, A. S., Khare, S., Kumar, A. B., Supek, F., Buchynskyy, A., Mathison, C. J., Chennamaneni, N. K., Pendem, N., Buckner, F. S., Gelb, M. H., & Molteni, V. (2014). Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chemical Reviews, 114(22), 11305–11347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair, S., Miller, B., Barends, M., Jaidee, A., Patel, J., Mayxay, M., Newton, P., Nosten, F., Ferdig, M. T., & Anderson, T. J. (2008). Adaptive copy number evolution in malaria parasites. PLoS Geneicst, 4, 1–10.

    CAS  Google Scholar 

  • Najm, N. D., Kayser, E. M., Hoffman, L., Herb, I., Fensterer, V., Pfister, K., & Silaghi, C. (2014). A molecular survey of Babesia spp. and Theileria spp. in red foxes (Vulpes vulpes) and their ticks from Thuringia Germany. Ticks and Tick Borne Disases, 4, 386–391.

    Article  Google Scholar 

  • Nankoberanyi, S., Mbogo, G. W., LeClair, N. P., Conrad, M. D., Tumwebaze, P., Tukwasibwe, S., Kamya, M. R., Tappero, J., Nsobya, S. L., & Rosenthal, P. J. (2014). Validation of the ligase detection reaction fluorescent microsphere assay for the detection of Plasmodium falciparum resistance mediating polymorphisms in Uganda. Malaria Journal, 13, 1–5.

    Article  CAS  Google Scholar 

  • Narikawa, S. (1986). Distribution of metronidazole susceptibility factors in obligate anaerobes. Journal of Antimirobes and Chemotherapy, 18, 565–574.

    Article  CAS  Google Scholar 

  • Nateghi, R. M., Nikmanesh, B., Haghi-Ashtiani, M. T., Monajemzadeh, M., Douraghi, M., Ghalavand, Z., & Kashi, L. (2014). Isospora belli associated recurrent diarrhea in a child with AIDS. Journal of Parasitic Diseases, 38, 444–446.

    Article  Google Scholar 

  • Nillius, D., Müller, J., & Müller, N. (2011). Nitroreductase (GlNR1) increases susceptibility of Giardia lamblia and E. coli to nitro drugs. Journal of Antimicrobes and Chemotherapy, 66, 1029–1035.

    Article  CAS  Google Scholar 

  • Nzila, A., Ochong, E., Nduati, E., Gilbert, K., Winstanley, P., Ward, S., & Marsh, K. (2005). Why has the dihydrofolate reductase 164 mutation not consistently been found in Africa yet? Transaction of Royal Society of Tropical Medicine and Hygiene, 99, 341–346.

    Article  CAS  Google Scholar 

  • O’Neill, P. M., Barton, V. E., & Ward, S. A. (2010). The molecular mechanism of action of artemisinin-the debate continues. Molecules, 15, 1705–1721.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ouellette, M., Drummelsmith, J., & Papadopoulou, B. (2004). Leishmaniasis: Drugs in the clinic, resistance and new developments. Drug Resistance, 7, 257–266.

    Article  CAS  Google Scholar 

  • Pavitra, N. R., Jorge, M. S., Arnab, P., Thomas, J. T., & Gunnar, R. M. (2016). Translational repression of the cpw-wpc gene family in the malaria parasite Plasmodium. Parasitology International, 65, 463–471.

    Article  CAS  Google Scholar 

  • Paz-Maldonado, M. T., Argüello-García, R., Cruz-Soto, M., Mendoza- Hernández, G., & Ortega-Pierres, G. (2013). Proteomic and transcriptional analyses of genes differentially expressed in Giardia duodenalis clones resistant to albendazole. Infection, Genetic and Evoloution, 15, 10–17.

    Article  CAS  Google Scholar 

  • Peregrine, A. S. (1994). Chemotherapy and delivery systems: Haemoparasites. Veterinary Parasitology, 54(1–3), 223–248.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Cabezas, B., Cecilio, P., Gaspar, T. B., Gartner, F., Vasconcellos, R., & Cordeiro-da-Silva, A. (2019). Understanding resistance versus susceptibility in visceral Leishmaniasis using mouse models of Leishmania infantum infection. Frontiers in Cellular and Infection Microbiology, 9, 1–30.

    Article  CAS  Google Scholar 

  • Persing, D. H., & Conrad, P. A. (1995). Babesiosis: New insights from phylogenetic analysis. Infectious Agents of Diseases, 4, 182–195.

    CAS  Google Scholar 

  • Peterson, D. S., Walliker, D., & Wellems, T. E. (1988). Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proceeding of National Acadamy of Sciences USA, 85(23), 9114–9118.

    Article  CAS  Google Scholar 

  • Pfefferkorn, E., & Borotz, S. E. (1994). Toxoplasma gondii: characterization of a mutant resistant to 6-thioxanthine. Experimental Parasitology, 79, 374–382.

    Article  CAS  PubMed  Google Scholar 

  • Plebanski, M., Flanagan, K. L., Lee, E. A. M., Reece, W. H. H., Hart, K., Gelder, C., et al. (1999). Interleukin 10-mediated immunosuppression by a variant CD4 T cell epitope ofPlasmodiumfalciparum. Immunity, 10, 651–660.

    Article  CAS  PubMed  Google Scholar 

  • Plowe, C. V., Cortese, J. F., Djimde, A., Nwanyanwu, O. C., Watkins, W. M., Winstanley, P. A., Estrada-Franco, J. G., Mollinedo, R. E., Avila, J. C., Cespedes, J. L., Carter, D. & Doumbo, O. K. (1997). Mutations in Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase and epidemiologic patterns of pyrimethamine-sulfadoxine use and resistance. Journal of Infectious Diseases, 176, 1590–1596

    Google Scholar 

  • Ponte-Sucre, A., Gamarro, F., Dujardin, J. C., Barrett, M. P., Lopez-Velez, R., Garcia-Hernandez, R., Pountain, A. W., Mwenechanya, R., & Papadopoulou, B. (2017). Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Neglected Tropical Diseases, 11, 1–24.

    Article  CAS  Google Scholar 

  • Pousibet-Puerto, J., Salas-Coronas, J., Sánchez-Crespo, A., Molina-Arrebola, M. A., Soriano-Pérez, M. J., Giménez-López, M. J., Vázquez-Villegas, J., & Cabezas-Fernández, M. T. (2016). Impact of using artemisinin-based combination therapy (ACT) in the treatment of uncomplicated malaria from Plasmodium falciparum in a non-endemic zone. Malaria Journal, 15, 339.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pramanik, P. K., Alam, M. N., Roy Chowdhury, D., & Chakraborti, T. (2019). Drug resistance in protozoan parasites: An incessant wrestle for survival. Journal of Global Antimicrobial Research, 18, 1–11.

    Article  Google Scholar 

  • Price, R. N., Uhlemann, A. C., van Vugt, M., Brockman, A., Hutagalung, R., Nair, S., Nash, D., Singhasivanon, P., Anderson, T. J., Krishna, S., White, N. J., & Nosten, F. (2006). Molecular and pharmacological determinants of the therapeutic response to artemetherlumefantrine in multidrug-resistant Plasmodium falciparum malaria. Clinical Infectious Diseases, 42, 1570–1577.

    Article  CAS  PubMed  Google Scholar 

  • Puentes, S. M., Da Silva, R. P., Sacks, D. L., Hammer, C. H., & Joiner, K. A. (1990). Serum resistance of metacyclic stage Leishmania majorpromastigotes is due to release of C5b–9. Journal of Immunology., 145, 4311–4316.

    Article  CAS  Google Scholar 

  • Quiliano, M., Mendoza, A., Fong, K. Y., Pabón, A., Goldfarb, N. E., Fabing, I., Vettorazzi, A., López de Cerain, A., Dunn, B. M., Garavito, G., Wright, D. W., Deharo, E., Pérez-Silanes, S., Aldana, I., & Galiano, S. (2016). Exploring the scope of new arylamino alcohol derivatives: Synthesis, antimalarial evaluation, toxicological studies, and target exploration. International Journal for Parasitology Drugs and Drug Resistance, 6(3), 184–198.

    Article  PubMed  PubMed Central  Google Scholar 

  • Quintana, J. F., Del Pino, R. C., Yamada, K., Zhang, N., & Field, M. C. (2018). Adaptation and therapeutic exploitation of the plasma membrane of African trypanosomes. Genes, 9(7), 1–16.

    Article  CAS  Google Scholar 

  • Rajapakse, S., Chrishan Shivanthan, M., Samaranayake, N., Rodrigo, C., & Deepika Fernando, S. (2013). Antibiotics for human toxoplasmosis: A systematic review of randomized trials. Pathogens and Global Health, 107, 162–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajapakshage, B. K. W., Yamasaki, M., Hwang, S. J., Sasaki, N., Murakami, M., Tamura, Y., Lim, S. Y., Nakamura, K., Ohta, H., & Takiguchi, M. (2012a). Involvement of mitochondrial genes of Babesia gibsoni in resistance to diminazene aceturate. Journal of Veterinary Medical Science, 5, 1–45.

    Google Scholar 

  • Rajapakshage, B. K. W., Yamasaki, M., Murakami, M., Tamura, Y., Lim, S. Y., Osuga, T., Sasaki, N., Nakamura, K., Ohta, H., & Takiguchi, M. (2012b). Analysis of energy generation and glycolysis pathway in diminazene aceturate-resistant Babesia gibsoni isolate in vitro. Japanese Journal of Veterinary Research, 60(2 & 3), 51–61.

    Google Scholar 

  • Reynolds, M. G., Oh, J., & Roos, D. S. (2001). In vitro generation of novel pyrimethamine resistance mutations in the Toxoplasma gondii dihydrofolate reductase. Antimicrobial Agents and Chemotherapy, 45, 1271–1277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynoldson, J. A., Thompson, R. C., & Meloni, B. P. (1991). In vivo efficacy of albendazole against Giardia duodenalis in mice. Parasitology Research, 77, 325–328.

    Google Scholar 

  • Ribeiro-Gomes, F. L., Moniz-de-Souza, M. C., Alexandre-Moreira, M. S., Dias, W. B., Lopes, M. F., Nunes, M. P., et al. (2007). Neutrophils activate macrophages for intracellular killing of Leishmania major through recruitment of TLR4 by neutrophil elastase. Journal of Immunology., 179, 3988–3994.

    Article  CAS  Google Scholar 

  • Robert, M. A., Okamoto, K. W., Gould, F., & Lloyd, A. L. (2014). Antipathogen genes and the replacement of disease-vectoring mosquito populations: A model-based evaluation. Evoloutionary Applied, 10, 1238–1251.

    Article  CAS  Google Scholar 

  • Sakuma, M., Setoguchi, A., & Endo, Y. (2009). Possible emergence of drug-resistant variants of Babesia gibsoni in clinical cases treated with atovaquone and azithromycin. Journal of Veterinary International Medicine, 23, 493–498.

    Article  CAS  Google Scholar 

  • Samuelson, J. (1999). Why metronidazole is active against both bacteria and parasites. Antimicrobial Agents and Chemotherapy, 43, 1533–1541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanches, B. F., Morgado, J., Carvalho, N., & Anjos, R. (2015). Multiple parasitic infections in a cardiac transplant recipient. BMJ Case Reports, 2015, 2014207033.

    Article  Google Scholar 

  • Schlitzer, M. (2007). Malaria chemotherapeutics part I: History of antimalarial drug development, currently used therapeutics, and drugs in clinical development. Chemical Medical Chemistry, 2(7), 944–986.

    Article  CAS  Google Scholar 

  • Sepúlveda-Arias, J. C., Gómez-Marin, J. E., Bobić, B., Naranjo-Galvis, C. A., & Djurković-Djaković, O. (2014). Toxoplasmosis as a travel risk. Traveler Medicine and Infectious Diseases, 12, 592–601.

    Google Scholar 

  • Shanan, S., Abd, H., Bayoumi, M., Saeed, A., & Sandstrom, G. (2015). Prevalence of protozoa species in drinking and environmental water sources in Sudan. Biomedicine Research International, 5, 1–5.

    Article  Google Scholar 

  • Shandilya, A., Chacko, S., Jayaram, B., & Ghosh, I. (2013). A plausible mechanism for the antimalarial activity of artemisinin: A computational approach. Scientific Reports, 3(1), 1–7.

    Google Scholar 

  • Shwab, E. K., Zhu, X. Q., Majumdar, D., Pena, H. F., Gennari, S. M., Dubey, J. P., & Su, C. (2014). Geographical patterns of Toxoplasma gondii genetic diversity revealed by multilocus PCR-RFLP genotyping. Parasitology, 141(4), 453–461.

    Article  PubMed  Google Scholar 

  • Sibley, C. H., Hyde, J. E., Sims, P. F., Plowe, C. V., Kublin, J. G., Mberu, E. K., Cowman, A. F., Winstanley, P. A., Watkins, W. M., & Nzila, A. M. (2001). Pyrimethamine-sulfadoxine resistance in Plasmodium falciparum: What next? Trends in Parasitology, 17, 582–588.

    Article  CAS  PubMed  Google Scholar 

  • Sidhu, A. B., Sun, Q., Nkrumah, L. J., Dunne, M. W., Sacchettini, J. C., & Fidock, D. A. (2007). In vitro efficacy, resistance selection, and structural modeling studies implicate the malarial parasite apicoplast as the target of azithromycin. Journal of Biology and Chemistry, 282, 2494–2504.

    Article  CAS  Google Scholar 

  • Sidhu, A. B., Uhlemann, A. C., Valderramos, S. G., Valderramos, J. C., Krishna, S., & Fidock, D. A. (2006). Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. Journal of Infectious Diseases, 194, 528–535.

    Article  Google Scholar 

  • Silvie, O., Rubinstein, E., Franetich, J. F., Prenant, M., Belnoue, E., Renia, L., Hannoun, L., Eling, W., Levy, S., Boucheix, C., & Mazier, D. (2003). Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Natural Medicine, 9, 93–96.

    Article  CAS  Google Scholar 

  • Simon, M. S., Westblade, L. F., Dziedziech, A., Visone, J. E., Furman, R. R., Jenkins, S. G., Schuetz, A. N., & Kirkman, L. A. (2017). Clinical and molecular evidence of atovaquone and azithromycin resistance in relapsed Babesia microti infection associated with rituximab and chronic lymphocytic leukemia. Clinical Infectious Diseases, 65(7), 1222–1225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sisowath, C., Stromberg, J., Martensson, A., Msellem, M., Obondo, C., Bjorkman, A., & Gil, J. P. (2005). In vivo selection of Plasmodium falciparum pfmdr1 86N coding alleles by artemether-lumefantrine (Coartem). Journal of Infectious Diseases, 191, 1014–1017.

    Article  CAS  Google Scholar 

  • Smith, F. D., Ellse, L., & Wall, R. (2013). Prevalence of babesia and anaplasma in ticks infesting dogs in Great Britain. Veterinary Parasitology, 198, 18–23.

    Article  PubMed  Google Scholar 

  • Smithuis, F., Kyaw, M. K., Phe, O., Win, T., Aung, P. P., Oo, A. P., Naing, A. L., Nyo, M. Y., Myint, N. Z., Imwong, M., Ashley, E., Lee, S. J., & White, N. J. (2010). Effectiveness of five artemisinin combination regimens with or without primaquine in uncomplicated falciparum malaria: An open-label randomised trial. Lancet Infectious Diseases, 10, 673–681.

    Article  CAS  PubMed  Google Scholar 

  • Solaymani-Mohammadi, S., Genkinger, J. M., Loffredo, C. A., & Singer, S. M. (2010). A meta-analysis of the effectiveness of albendazole compared with metronidazole as treatments for infections with Giardia duodenalis. PLoS Neglected Tropical Diseases, 4(5), 1–10.

    Article  CAS  Google Scholar 

  • Soulsby, E. J. L. (1982). Helminths, arthropods and protozoa of domestic animals (7th Edn.), Bailliere Tindall.

    Google Scholar 

  • Srivastava, I. K., & Vaidya, A. B. (1999). A mechanism for the synergistic antimalarial action of atovaquone and proguanil. Antimicrobial Agents and Chemotherapy, 43, 1334–1339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suwanarusk, R., Chavchich, M., Russell, B., Jaidee, A., Chalfein, F., Barends, M., Prasetyorini, B., Kenangalem, E., Piera, K. A., Lek-Uthai, U., Anstey, N. M., Tjitra, E., Nosten, F., Cheng, Q., & Price, R. N. (2008). Amplification of pvmdr1 associated with multidrug-resistant Plasmodium vivax. Journal of Infectious Diseases, 198(10), 1558–1564.

    Article  CAS  Google Scholar 

  • Swanson, E. A., March, J. K., Clayton, F., Couturier, M. R., Arcega, R., Smith, R., & Evason, K. J. (2018). Epithelial Inclusions in gallbladder specimens mimic parasite infection: Histologic and molecular examination of reported Cystoisospora belli infection in gallbladders of Immunocompetent patients. American Journal of Surgical Pathology, 42, 1346–1352.

    Article  Google Scholar 

  • Talapko, J., Škrlec, I., Alebić, T., Jukić, M., & Včev, A. (2019). Malaria: The past and the present. Microorganisms, 7(6), 179–196.

    Article  CAS  PubMed Central  Google Scholar 

  • Tejman-Yarden, N., & Eckman, L. (2011). New approaches to the treatment of giardiasis. Current Opinion in InfectiousDiseases, 24, 451–456.

    Article  CAS  Google Scholar 

  • Tejman-Yarden, N., Miyamoto, Y., Leitsch, D., Santini, J., Debnath, A., Gut, J., McKerrow, J. H., Reed, S. L., & Eckmann, L. (2013). A reprofiled drug, auranofin, is effective against metronidazole-resistant Giardia lamblia. Antimicrobial Agents and Chemotherapy, 57(5), 2029–2035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Telford, S. R., III., Gorenflot, A., Brasseur, P., & Spielman, A. (1993). Babesial infections in humans and wildlife. In J. P. Kreier (Ed.), Parasitic protozoa (pp. 1–47). Academic Press.

    Google Scholar 

  • Tenter, A. M., Heckeroth, A. R., & Weiss, L. M. (2000). Toxoplasma gondii: from animals to humans. International Journal of Parasitology, 30, 1217–1258.

    Article  CAS  PubMed  Google Scholar 

  • Ter Kuile, F. O., van Eijk, A. M., & Filler, S. J. (2007). Effect of sulfadoxine-pyrimethamine resistance on the efficacy of intermittent preventive therapy for malaria control during pregnancy: A systematic review. JAMA, 297, 2603–2616.

    Article  PubMed  Google Scholar 

  • Then, R. L. (1982). Mechanisms of resistance to trimethoprim, the sulfonamides, and trimethoprim-sulfamethoxazole. Clinical Infectious Diseases, 4(2), 261–269.

    Article  CAS  Google Scholar 

  • Thomas, J., Baker, N., Hutchinson, S., Dominicus, C., Trenaman, A., Glover, L., Alsford, S., & Horn, D. (2018). Insights into antitrypanosomal drug mode-of-action from cytology-based profiling. PLoS Neglcted Tropical Diseases, 12, 1–19.

    Google Scholar 

  • Thompson, P. E., Bayles, A., Olszewski, B., & Waitz, J. A. (1965). Quinine-resistant Plasmodium berghei in mice. Science, 148(3674), 1240–1241.

    Article  CAS  PubMed  Google Scholar 

  • Tilley, L., Straimer, J., Gnädig, N. F., Ralph, S. A., & Fidock, D. A. (2016). Artemisinin action and resistance in Plasmodium falciparum. Trends in Parasitology, 32, 682–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomavo, S., & Boothroyd, J. C. (1995). Interconnection between organellar functions, development and drug resistance in the protozoan parasite, Toxoplasma gondii. International Journal of Parasitology, 25, 1293–1299.

    Article  CAS  PubMed  Google Scholar 

  • Turcano, L., Torrente, E., Missineo, A., Andreini, M., Gramiccia, M., Di Muccio, T., Genovese, I., Fiorillo, A., Harper, S., Bresciani, A., & Colotti, G. (2018). Identification and binding mode of a novel Leishmania Trypanothione reductase inhibitor from high throughput screening. PLoS Neglected Tropical Diseases, 12(11), 1–21.

    Article  CAS  Google Scholar 

  • Ud Din, N., Torka, P., Hutchison, R. E., Riddell, S. W., Wright, J., & Gajra, A. (2012). Severe Isospora (Cystoisospora) belli diarrhea preceding the diagnosis of human T-cell-leukemia-virus-1-associated T-cell Lymphoma. Case Reports in Infectious Diseases, 2012, 1–4.

    Article  Google Scholar 

  • Upcroft, P., & Upcroft, J. A. (2001). Drug targets and mechanisms of resistance in the anaerobic protozoa. Clinical Microbiology Review, 14, 150–164.

    Article  CAS  Google Scholar 

  • Urquhart, G. M., Armour, J., Duncan, J. L., Dunn, A. M., & Jennings, F. W. (1996). Veterinary parasitology (2nd ed., p. 307). Blackwell Scince limited.

    Google Scholar 

  • Uzlikova, M., & Nohynkova, E. (2014). The effect of metronidazole on the cell cycle and DNA in metronidazole-susceptible and -resistant Giardia cell lines. Molecular Biochemsity and Parasitology, 198, 75–81.

    Article  CAS  Google Scholar 

  • Vaillant, V., Valk, H. D., Baron, E., Ancelle, T., Colin, P., Delmas, M. C., Dufour, B., Pouillot, R., Strat, Y. L., Weinbreck, P., & Jougla, E. (2005). Foodborne infections in France. Foodbourne Pathogens and Disease, 2(3), 221–232.

    Article  CAS  Google Scholar 

  • Valderramos, S. G., & Fidock, D. A. (2006). Transporters involved in resistance to antimalarial drugs. Trends in Pharmacological Sciences, 27, 594–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Pluijm, R. W., Imwong, M., Chau, N. H., Hoa, N. T., Thuy-Nhien, N. T., Thanh, N. V., Jittamala, P., Hanboonkunupakarn, B., Chutasmit, K., Saelow, C., & Runjarern, R. (2019). Determinants of dihydroartemisinin-piperaquine treatmet failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: A prospective clinical, pharmacological, and genetic study. The Lancet Infectious Diseases, 19(9), 952–961.

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Pluijm, R. W., Tripura, R., Hoglund, R. M., Phyo, A. P., Lek, D., Ul Islam, A., Anvikar, A. R., Satpathi, P., Satpathi, S., Behera, P. K., & Tripura, A. (2020). Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial. The Lancet, 2020, 1345–1360.

    Article  Google Scholar 

  • Vennerstrom, J. L., Ellis, W. Y., Ager Jr, A. L., Andersen, S. L., Gerena, L., & Milhous, W. K. (1992). Bisquinolines. 1. N, N-bis (7-chloroquinolin-4-yl) alkanediamines with potential against chloroquine-resistant malaria. Journal of Medicinal Chemistry, 35(11), 2129–2134.

    Google Scholar 

  • Verdier, R. I., Fitzgerald, D. W., Johnson, W. D., Jr., & Pape, J. W. (2000). Trimethoprim–sulfamethoxazole compared with ciprofloxacin for treatment and prophylaxis of Isospora belli and Cyclospora cayetanensis infection in HIV-infected patients: a randomized, controlled trial. Annals of Internal Medicine, 132(11), 885–888.

    Article  CAS  PubMed  Google Scholar 

  • Vial, H. J., & Gorenflot, A. (2006). Chemotherapy against babesiosis. Veterinary Parasitology, 138(1–2), 147–160.

    Article  CAS  PubMed  Google Scholar 

  • Villena, I., Aubert, D., Leroux, B., Dupouy, D., Talmud, M., Chemla, C., Trenque, T., Schmit, G., Quereux, C., Guenounou, M., & Pluot, M. (1998). Pyrimethamine-sulfadoxine treatment of congenital toxoplasmosis: Follow-up of 78 cases between 1980 and 1997. Scandinavian Journal of Infectious Diseases, 30(3), 295–300.

    Article  CAS  PubMed  Google Scholar 

  • Walker, N., Nadjm, B., & Whitty, C. (2017). Malaria. Medicine, 42, 52–58.

    Google Scholar 

  • Wang, Z. D., Liu, H. H., Ma, Z. X., Ma, H. Y., Li, Z. Y., Yang, Z. B., Zhu, X. Q., Xu, B., Wei, F., & Liu, Q. (2017). Toxoplasma gondii infection in immunocompromised patients: A systematic review and meta-analysis. Frontiers in Microbiology, 8, 1–12.

    Google Scholar 

  • Weiss, L. M., Perlman, D. C., Sherman, J., Tanowitz, H., & Wittner, M. (1988). Isospora belli infection: Treatment with pyrimethamine. Annals of Internal Medicine, 109, 474–475.

    Article  CAS  PubMed  Google Scholar 

  • Wells, T. N., Alonso, P. L., & Gutteridge, W. E. (2009). New medicines to improve control and contribute to the eradication of malaria. Nature Reviews Drug Discovery, 8(11), 879–891.

    Article  CAS  PubMed  Google Scholar 

  • Wells, T. N., Burrows, J. N., & Baird, J. K. (2010). Targeting the hypnozoite reservoir of Plasmodium vivax: The hidden obstacle to malaria elimination. Trends in Parasitology, 26(3), 145–151.

    Article  PubMed  Google Scholar 

  • Wenyon, C. M. (1923). Coccidiosis of cats and dogs and the status of the Isospora of man. Annals of Tropical Medicine and Parasitology, 17, 231–288.

    Article  Google Scholar 

  • WHO. (2009). Guidelines for the treatment of malaria world health organization. http://whqlibdoc.who.int/publications/2010/9789241547925_eng.pdf

  • WHO. (2010) Control of the Leishmaniases; World Health Organization.

    Google Scholar 

  • WHO. (2011). Global plan for Artemisinin Resistance Containment World Health Organization. http://www.who.int/malaria/publications/atoz/9789241500838/en/index.html.

  • WHO. (2015). Guidelines for the treatment of malaria (3rd ed., p. 2015). World Health Organization.

    Google Scholar 

  • WHO. (2018). World health organization. World Malaria Report 2018. WHO. 2018. Accessed July 5, 2020. https://apps.who.int/iris/bitstream/handle/10665/275867/9789241565653-eng.pdf?ua=1

  • WHO. (2019a). Model list of essential medicines. http://www.who.int/medicines/publications/essentialmedicines/en/. Accessed June 24, 2020.

  • WHO. (2019b). World malaria report 2019b. World Health Organization.

    Google Scholar 

  • Wiedemar, N., Graf, F. E., Zwyer, M., Ndomba, E., Kunz Renggli, C., Cal, M., Schmidt, R. S., Wenzler, T., & Mäser, P. (2018). Beyond immune escape: A variant surface glycoprotein causes suramin resistance in Trypanosoma brucei. Molecular Microbiology, 107(1), 57–67.

    Article  CAS  PubMed  Google Scholar 

  • Wittner, M., Lederman, J., Tanowitz, H. B., Rosenbaum, G. S., & Weiss, L. M. (1996). Atovaquone in the treatment of Babesia microti infections in hamsters. The American Journal of Tropical Medicine and Hygiene, 55(2), 219–222.

    Article  CAS  PubMed  Google Scholar 

  • Wiwanitkit, V. (2012). Interest in paromomycin for the treatment of visceral leishmaniasis (kala-azar). Therapeutics and Clinical Risk Management, 8, 323–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong, I. L., Chan, K. F., Zhao, Y., Chan, T. H., & Chow, L. M. (2009). Quinacrine and a novel apigenin dimer can synergistically increase the pentamidine susceptibility of the protozoan parasite Leishmania. Journal of Antimicrobial Chemotherapy, 63(6), 1179–1190.

    Article  CAS  Google Scholar 

  • Wongsrichanalai, C., Pickard, A. L., Wernsdorfer, W. H., & Meshnick, S. R. (2002). Epidemiology of drug-resistant malaria. The Lancet Infectious Diseases, 2(4), 209–218.

    Article  CAS  PubMed  Google Scholar 

  • Woodrow, C. J., & Krishna, S. (2006). Antimalarial drugs: recent advances in molecular determinants of resistance and their clinical significance. Cellular and Molecular Life Sciences CMLS, 63(14), 1586–1596.

    Article  CAS  PubMed  Google Scholar 

  • Woodrow, C. J., & White, N. J. (2017). The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread. FEMS Microbiology Reviews, 41(1), 34–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woon, S. A., Yang, R., Ryan, U., Boan, P., & Prentice, D. (2016). Chronic Cystoisospora belli infection in an immunocompetent Myanmar refugee–microscopy is not sensitive enough. BMC Infectious Diseases, 16(1), 221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamasaki, M., Hossain, M. A., Jeong, J. R., Chang, H. S., Satoh, H., Yamato, O., & Maede, Y. (2003). Babesia gibsoni–specific isoenzymes related to energy metabolism of the parasite in infected erythrocytes. Journal of Parasitology, 89(6), 1142–1146.

    Google Scholar 

  • Yang, G., Choi, G., & No, J. H. (2016). Antileishmanial mechanism of diamidines involves targeting kinetoplasts. Antimicrobial Agents and Chemotherapy, 60(11), 6828–6836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarlett, N., Gorrell, T. E., Marczak, R., & Müller, M. (1985). Reduction of nitroimidazole derivatives by hydrogenosomal extracts of Trichomonas vaginalis. Molecular and Biochemical Parasitology, 14(1), 29–40.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, G., Guan, Y., Zheng, B., Wu, S., & Tang, L. (2008). No PfATPase6 S769N mutation found in Plasmodium falciparum isolates from China. Malaria Journal, 7(1), 122–141.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Muhammad Rizwan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rizwan, H.M. et al. (2021). Drug Resistance in Protozoal Infections. In: Ahmed, S., Chandra Ojha, S., Najam-ul-Haq, M., Younus, M., Hashmi, M.Z. (eds) Biochemistry of Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-030-76320-6_4

Download citation

Publish with us

Policies and ethics