Skip to main content

Recent Advances in Lipid-Based Nanoformulations for Breast Cancer Theranostics

  • Chapter
  • First Online:
Cancer Nanotheranostics

Abstract

Breast cancer is one of the principal causes of cancer deaths across the world. Chemoresistance, bioavailability issues and off-target effects are the significant limitations of conventional therapeutic agents in treating breast cancer. In recent years, researchers have concentrated on creating nanomedicine platforms to overcome the limitations associated with traditional anticancer therapies. Simultaneous diagnosis and treatment (theranostics) of cancer using custom-designed nanomedicines is one of the critical advancements in cancer research. Among various nanocarriers, lipid-based nanotheranostics have multiple advantages like biocompatibility, improved cellular uptake, and reducing off-target side effects. Therefore, lipid-based nanotheranostics are considered an effective and safer option for eradicating breast cancer. This chapter presents an updated description of lipid-based nanoformulations and their applications in breast cancer theranostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeylath, S. C., Ganta, S., Iyer, A. K., & Amiji, M. (2011). Combinatorial-designed multifunctional polymeric nanosystems for tumor-targeted therapeutic delivery. Accounts of Chemical Research, 44(10), 1009–1017.

    Article  CAS  PubMed  Google Scholar 

  • Al-Jamal, W. T., & Kostarelos, K. (2011). Liposomes: From a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Accounts of Chemical Research, 44(10), 1094–1104.

    Article  CAS  PubMed  Google Scholar 

  • Allen, T. M. (1994). Long-circulating (sterically stabilized) liposomes for targeted drug delivery. Trends in Pharmacological Sciences, 15(7), 215–220.

    Article  CAS  PubMed  Google Scholar 

  • Amreddy, N., Babu, A., Panneerselvam, J., Srivastava, A., Muralidharan, R., Chen, A., et al. (2018). Chemo-biologic combinatorial drug delivery using folate receptor-targeted dendrimer nanoparticles for lung cancer treatment. Nanomedicine: Nanotechnology, Biology and Medicine, 14(2), 373–384.

    Article  CAS  Google Scholar 

  • Arleth, L., Ashok, B., Onyuksel, H., Thiyagarajan, P., Jacob, J., & Hjelm, R. P. (2005). Detailed structure of hairy mixed micelles formed by phosphatidylcholine and PEGylated phospholipids in aqueous media. Langmuir, 21(8), 3279–3290.

    Article  CAS  PubMed  Google Scholar 

  • Barenholz, Y. C. (2012). Doxil®—The first FDA-approved nano-drug: Lessons learned. Journal of Controlled Release, 160(2), 117–134.

    Article  CAS  PubMed  Google Scholar 

  • Beloqui, A., Solinís, M. Á., Rodríguez-Gascón, A., Almeida, A. J., & Préat, V. (2016). Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine: Nanotechnology, Biology and Medicine, 12(1), 143–161.

    Article  CAS  Google Scholar 

  • Brezaniova, I., Hruby, M., Kralova, J., Kral, V., Cernochova, Z., Cernoch, P., et al. (2016). Temoporfin-loaded 1-tetradecanol-based thermoresponsive solid lipid nanoparticles for photodynamic therapy. Journal of Controlled Release, 241, 34–44.

    Article  CAS  PubMed  Google Scholar 

  • Burdock, G. A., & Carabin, I. G. (2004). Generally recognized as safe (GRAS): History and description. Toxicology Letters, 150(1), 3–18.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., Zhang, W., Zhu, G., Xie, J., & Chen, X. (2017). Rethinking cancer nanotheranostics. Nature Reviews Materials, 2(7), 1–18.

    Article  CAS  Google Scholar 

  • Chintamaneni, P. K., Krishnamurthy, P. T., Rao, P. V., & Pindiprolu, S. S. (2017). Surface modified nano-lipid drug conjugates of positive allosteric modulators of M1 muscarinic acetylcholine receptor for the treatment of Alzheimer’s disease. Medical Hypotheses, 101, 17–22.

    Article  CAS  PubMed  Google Scholar 

  • Dai, W., Yang, F., Ma, L., Fan, Y., He, B., He, Q., et al. (2014). Combined mTOR inhibitor rapamycin and doxorubicin-loaded cyclic octapeptide modified liposomes for targeting integrin α3 in triple-negative breast cancer. Biomaterials, 35(20), 5347–5358.

    Article  CAS  PubMed  Google Scholar 

  • Deamer, D., & Bangham, A. (1976). Large volume liposomes by an ether vaporization method. Biochimica et Biophysica Acta (BBA) - Biomembranes, 443(3), 629–634.

    Article  CAS  Google Scholar 

  • Díaz, M. R., & Vivas-Mejia, P. E. (2013). Nanoparticles as drug delivery systems in cancer medicine: Emphasis on RNAi-containing nanoliposomes. Pharmaceuticals., 6(11), 1361–1380.

    Article  PubMed  CAS  Google Scholar 

  • Dietze, E. C., Sistrunk, C., Miranda-Carboni, G., O’Regan, R., & Seewaldt, V. L. (2015). Triple-negative breast cancer in African-American women: Disparities versus biology. Nature Reviews. Cancer, 15(4), 248–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dontu, G., Al-Hajj, M., Abdallah, W. M., Clarke, M. F., & Wicha, M. S. (2003). Stem cells in normal breast development and breast cancer. Cell Proliferation, 36(s1), 59–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edmonds, C., Hagan, S., Gallagher-Colombo, S. M., Busch, T. M., & Cengel, K. A. (2012). Photodynamic therapy activated signaling from epidermal growth factor receptor and STAT3: Targeting survival pathways to increase PDT efficacy in ovarian and lung cancer. Cancer Biology & Therapy, 13(14), 1463–1470.

    Article  CAS  Google Scholar 

  • FDA U. (2009). Inactive ingredient guide. Division of Drug Information Resources.

    Google Scholar 

  • Feng, L., & Mumper, R. J. (2013). A critical review of lipid-based nanoparticles for taxane delivery. Cancer Letters, 334(2), 157–175.

    Article  CAS  PubMed  Google Scholar 

  • Feng, L., Cheng, L., Dong, Z., Tao, D., Barnhart, T. E., Cai, W., et al. (2017). Theranostic liposomes with hypoxia-activated prodrug to effectively destruct hypoxic tumors post-photodynamic therapy. ACS Nano, 11(1), 927–937.

    Article  CAS  PubMed  Google Scholar 

  • Ferlay, J., Héry, C., Autier, P., & Sankaranarayanan, R. (2010). Global burden of breast cancer. In Breast cancer epidemiology (pp. 1–19). Springer.

    Google Scholar 

  • Frederiksen, L., Anton, K., Hoogevest, P. V., Keller, H. R., & Leuenberger, H. (1997). Preparation of liposomes encapsulating water-soluble compounds using supercritical carbon dioxide. Journal of Pharmaceutical Sciences, 86(8), 921–928.

    Article  CAS  PubMed  Google Scholar 

  • Gabizon, A., Shmeeda, H., & Barenholz, Y. (2003). Pharmacokinetics of pegylated liposomal doxorubicin. Clinical Pharmacokinetics, 42(5), 419–436.

    Article  CAS  PubMed  Google Scholar 

  • Godin, B., & Touitou, E. (2003). Ethosomes: New prospects in transdermal delivery. Critical Reviews in Therapeutic Drug Carrier Systems, 20(1), 63–102.

    Article  CAS  PubMed  Google Scholar 

  • Gubbins, J. D. (2016). Engineering theranostic liposomes for image guided drug delivery as a novel nanomedicine for cancer therapy. The University of Manchester (United Kingdom).

    Google Scholar 

  • He, Y., Zhang, L., Zhu, D., & Song, C. (2014). Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy. International Journal of Nanomedicine, 9, 4055.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Honeywell-Nguyen, P. L., & Bouwstra, J. A. (2005). Vesicles as a tool for transdermal and dermal delivery. Drug Discovery Today: Technologies, 2(1), 67–74.

    Article  CAS  PubMed  Google Scholar 

  • Hussain, A., Usman Mohd Siddique, M., Kumar Singh, S., Samad, A., Beg, S., & Wais, M. (2015). Lipid-drug conjugates for oral bioavailability enhancement. Recent Patents on Nanomedicine., 5(2), 87–95.

    Article  CAS  Google Scholar 

  • Joo, K.-I., Xiao, L., Liu, S., Liu, Y., Lee, C.-L., Conti, P. S., et al. (2013). Crosslinked multilamellar liposomes for controlled delivery of anticancer drugs. Biomaterials, 34(12), 3098–3109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kallinen, A. M., Sarparanta, M. P., Liu, D., Makila, E. M., Salonen, J. J., Hirvonen, J. T., et al. (2014). In vivo evaluation of porous silicon and porous silicon solid lipid nanocomposites for passive targeting and imaging. Molecular Pharmaceutics, 11(8), 2876–2886.

    Article  CAS  PubMed  Google Scholar 

  • Kang, S. J., Jeong, H. Y., Kim, M. W., Jeong, I. H., Choi, M. J., You, Y. M., et al. (2018). Anti-EGFR lipid micellar nanoparticles co-encapsulating quantum dots and paclitaxel for tumor-targeted theranosis. Nanoscale, 10(41), 19338–19350.

    Article  CAS  PubMed  Google Scholar 

  • Kievit, F. M., & Zhang, M. (2011). Cancer nanotheranostics: Improving imaging and therapy by targeted delivery across biological barriers. Advanced Materials, 23(36), H217–HH47.

    Article  CAS  PubMed  Google Scholar 

  • Knop, K., Hoogenboom, R., Fischer, D., & Schubert, U. S. (2010). Poly (ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives. Angewandte Chemie International Edition, 49(36), 6288–6308.

    Article  CAS  PubMed  Google Scholar 

  • Laouini, A., Jaafar-Maalej, C., Limayem-Blouza, I., Sfar, S., Charcosset, C., & Fessi, H. (2012). Preparation, characterization and applications of liposomes: State of the art. Journal of Colloid Science and Biotechnology., 1(2), 147–168.

    Article  CAS  Google Scholar 

  • Lee, S., & Na, K. (2020). Oleic acid conjugated polymeric photosensitizer for metastatic cancer targeting in photodynamic therapy. Biomaterials Research., 24(1), 1–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, L., Liu, T., Fu, C., Liu, H., Tan, L., & Meng, X. (2014). Multifunctional silica-based nanocomposites for cancer nanotheranostics. Journal of Biomedical Nanotechnology, 10(9), 1784–1809.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Wang, K., Yang, X., Zhou, Y., Ping, Q., Oupicky, D., et al. (2017). Dual-function nanostructured lipid carriers to deliver IR780 for breast cancer treatment: Anti-metastatic and photothermal anti-tumor therapy. Acta Biomaterialia, 53, 399–413.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Zhen, W., Jin, L., Zhang, S., Sun, G., Zhang, T., et al. (2018). All-in-one theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradication. ACS Nano, 12(5), 4886–4893.

    Article  CAS  PubMed  Google Scholar 

  • Liu, C., Ewert, K. K., Wang, N., Li, Y., Safinya, C. R., & Qiao, W. (2019). A multifunctional lipid that forms contrast-agent liposomes with dual-control release capabilities for precise MRI-guided drug delivery. Biomaterials, 221, 119412.

    Article  CAS  PubMed  Google Scholar 

  • Luk, B. T., Fang, R. H., & Zhang, L. (2012). Lipid-and polymer-based nanostructures for cancer theranostics. Theranostics., 2(12), 1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda, H., Wu, J., Sawa, T., Matsumura, Y., & Hori, K. (2000). Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. Journal of Controlled Release, 65(1–2), 271–284.

    Article  CAS  PubMed  Google Scholar 

  • Meier, R., Henning, T. D., Boddington, S., Tavri, S., Arora, S., Piontek, G., et al. (2010). Breast cancers: MR imaging of folate-receptor expression with the folate-specific nanoparticle P1133. Radiology, 255(2), 527–535.

    Article  PubMed  Google Scholar 

  • Mikhaylov, G., Mikac, U., Magaeva, A. A., Itin, V. I., Naiden, E. P., Psakhye, I., et al. (2011). Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nature Nanotechnology, 6(9), 594–602.

    Article  CAS  PubMed  Google Scholar 

  • Miyako, E., Nagata, H., Hirano, K., Sakamoto, K., Makita, Y., Nakayama, K.-I., et al. (2008). Photoinduced antiviral carbon nanohorns. Nanotechnology, 19(7), 075106.

    Article  PubMed  CAS  Google Scholar 

  • Moret, F., Scheglmann, D., & Reddi, E. (2013). Folate-targeted PEGylated liposomes improve the selectivity of PDT with meta-tetra (hydroxyphenyl) chlorin (m-THPC). Photochemical & Photobiological Sciences, 12(5), 823–834.

    Article  CAS  Google Scholar 

  • Mu, L., Elbayoumi, T., & Torchilin, V. (2005). Mixed micelles made of poly (ethylene glycol)–phosphatidylethanolamine conjugate and d-α-tocopheryl polyethylene glycol 1000 succinate as pharmaceutical nanocarriers for camptothecin. International Journal of Pharmaceutics, 306(1–2), 142–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muchow, M., Maincent, P., & Müller, R. H. (2008). Lipid nanoparticles with a solid matrix (SLN®, NLC®, LDC®) for oral drug delivery. Drug Development and Industrial Pharmacy, 34(12), 1394–1405.

    Article  CAS  PubMed  Google Scholar 

  • Muddineti, O. S., Rompicharla, S. V. K., Kumari, P., Bhatt, H., Ghosh, B., & Biswas, S. (2020). Lipid and poly (ethylene glycol)-conjugated bi-functionalized chlorine e6 micelles for NIR-light induced photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 29, 101633.

    Article  CAS  PubMed  Google Scholar 

  • Müller, R., & Olbrich, C. (1999). Arzneistoffträger zur kontrollierten Wirkstoffapplikation hergestellt aus nicht-kovalenten Lipidmatrix-Arzneistoff-Konjugaten. German Patent Application., 199(64), 085.8.

    Google Scholar 

  • Müller, R. H., & Olbrich, C. (2004). Lipid matrix-drug conjugates particle for controlled release of active ingredient. Google Patents.

    Google Scholar 

  • Muntimadugu, E., Kumar, R., Saladi, S., Rafeeqi, T. A., & Khan, W. (2016). CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel. Colloids and Surfaces B: Biointerfaces, 143, 532–546.

    Article  CAS  PubMed  Google Scholar 

  • Naczynski, D. J., Tan, M. C., Riman, R. E., & Moghe, P. V. (2014). Rare earth nanoprobes for functional biomolecular imaging and theranostics. Journal of Materials Chemistry B, 2(20), 2958–2973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namiki, Y., Fuchigami, T., Tada, N., Kawamura, R., Matsunuma, S., Kitamoto, Y., et al. (2011). Nanomedicine for cancer: Lipid-based nanostructures for drug delivery and monitoring. Accounts of Chemical Research, 44(10), 1080–1093.

    Article  CAS  PubMed  Google Scholar 

  • Nasongkla, N., Bey, E., Ren, J., Ai, H., Khemtong, C., Guthi, J. S., et al. (2006). Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Letters, 6(11), 2427–2430.

    Article  CAS  PubMed  Google Scholar 

  • Navarro, F. P., Creusat, G., Frochot, C., Moussaron, A., Verhille, M., Vanderesse, R., et al. (2014). Preparation and characterization of mTHPC-loaded solid lipid nanoparticles for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 130, 161–169.

    Article  CAS  Google Scholar 

  • Ohulchanskyy, T. Y., Kopwitthaya, A., Jeon, M., Guo, M., Law, W.-C., Furlani, E. P., et al. (2013). Phospholipid micelle-based magneto-plasmonic nanoformulation for magnetic field-directed, imaging-guided photo-induced cancer therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 9(8), 1192–1202.

    Article  CAS  Google Scholar 

  • Olbrich, C., Gessner, A., Kayser, O., & Müller, R. H. (2002). Lipid-drug-conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazenediaceturate. Journal of Drug Targeting, 10(5), 387–396.

    Article  CAS  PubMed  Google Scholar 

  • Owens, T. W., & Naylor, M. J. (2013). Breast cancer stem cells. Frontiers in physiology, 4, 225.

    Google Scholar 

  • Pais-Silva, C., de Melo-Diogo, D., & Correia, I. J. (2017). IR780-loaded TPGS-TOS micelles for breast cancer photodynamic therapy. European Journal of Pharmaceutics and Biopharmaceutics, 113, 108–117.

    Article  CAS  PubMed  Google Scholar 

  • Paliwal, R., Babu, R. J., & Palakurthi, S. (2014). Nanomedicine scale-up technologies: Feasibilities and challenges. AAPS PharmSciTech, 15(6), 1527–1534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parhi, P., & Sahoo, S. K. (2015). Trastuzumab guided nanotheranostics: A lipid based multifunctional nanoformulation for targeted drug delivery and imaging in breast cancer therapy. Journal of Colloid and Interface Science, 451, 198–211.

    Article  CAS  PubMed  Google Scholar 

  • Patil, Y. P., & Jadhav, S. (2014). Novel methods for liposome preparation. Chemistry and Physics of Lipids, 177, 8–18.

    Article  CAS  PubMed  Google Scholar 

  • Patlolla, R. R., Chougule, M., Patel, A. R., Jackson, T., Tata, P. N., & Singh, M. (2010). Formulation, characterization and pulmonary deposition of nebulized celecoxib encapsulated nanostructured lipid carriers. Journal of Controlled Release, 144(2), 233–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peira, E., Marzola, P., Podio, V., Aime, S., Sbarbati, A., & Gasco, M. R. (2003). In vitro and in vivo study of solid lipid nanoparticles loaded with superparamagnetic iron oxide. Journal of Drug Targeting, 11(1), 19–24.

    Article  CAS  PubMed  Google Scholar 

  • Pindiprolu, S. H., & Pindiprolu, S. K. S. (2019). CD133 receptor mediated delivery of STAT3 inhibitor for simultaneous elimination of cancer cells and cancer stem cells in oral squamous cell carcinoma. Medical Hypotheses, 129, 109241.

    Article  CAS  PubMed  Google Scholar 

  • Pindiprolu, S. K. S., Chintamaneni, P. K., Krishnamurthy, P. T., & Ratna Sree Ganapathineedi, K. (2018a). Formulation-optimization of solid lipid nanocarrier system of STAT3 inhibitor to improve its activity in triple negative breast cancer cells. Drug Development and Industrial Pharmacy. (just-accepted), 1–25.

    Google Scholar 

  • Pindiprolu, S. K. S., Krishnamurthy, P. T., & Chintamaneni, P. K. (2018b). Pharmacological targets of breast cancer stem cells: A review. Naunyn-Schmiedeberg's Archives of Pharmacology, 391(5), 463–479.

    Article  CAS  PubMed  Google Scholar 

  • Pindiprolu, S. K. S., Krishnamurthy, P. T., Chintamaneni, P. K., & Karri, V. V. S. R. (2018c). Nanocarrier based approaches for targeting breast cancer stem cells. Artificial Cells, Nanomedicine, and Biotechnology., 46(5), 885–898.

    Article  CAS  PubMed  Google Scholar 

  • Pindiprolu, S. K. S., Chintamaneni, P. K., Krishnamurthy, P. T., & Ratna Sree Ganapathineedi, K. (2019). Formulation-optimization of solid lipid nanocarrier system of STAT3 inhibitor to improve its activity in triple negative breast cancer cells. Drug Development and Industrial Pharmacy, 45(2), 304–313.

    Article  CAS  PubMed  Google Scholar 

  • Pindiprolu, S. K. S., Kumar, C. S. P., Golla, V. S. K., Pindiproli, L., & Ramachandra, R. (2020). Pulmonary delivery of nanostructured lipid carriers for effective repurposing of salinomycin as an antiviral agent. Medical Hypotheses, 143, 109858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranade, V. V., & Cannon, J. B. (2011). Drug delivery systems. CRC press.

    Book  Google Scholar 

  • Rizzitelli, S., Giustetto, P., Cutrin, J. C., Castelli, D. D., Boffa, C., Ruzza, M., et al. (2015). Sonosensitive theranostic liposomes for preclinical in vivo MRI-guided visualization of doxorubicin release stimulated by pulsed low intensity non-focused ultrasound. Journal of Controlled Release, 202, 21–30.

    Article  CAS  PubMed  Google Scholar 

  • Sai Kiran Pindiprolu, S. S., Krishnamurthy, P. T., Ghanta, V. R., & Chintamaneni, P. K. (2020). Phenyl boronic acid-modified lipid nanocarriers of niclosamide for targeting triple-negative breast cancer. Nanomedicine, 15(16), 1551–1565.

    Article  CAS  Google Scholar 

  • Shaik, E. B., Pindiprolu, S. K. S., Phanikumar, C. S., Samuel, T., Kumar, B. N., Santhoshi, P. M., et al. (2020). Optical emissions of chitosan modified LaAlO3: Bi3+, Tb3+ nanoparticles for bio labeling and drug delivery to breast cancer cells. Optical Materials, 107, 110162.

    Article  CAS  Google Scholar 

  • Shao, Z., Shao, J., Tan, B., Guan, S., Liu, Z., Zhao, Z., et al. (2015). Targeted lung cancer therapy: Preparation and optimization of transferrin-decorated nanostructured lipid carriers as novel nanomedicine for co-delivery of anticancer drugs and DNA. International Journal of Nanomedicine, 10, 1223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, J., Kim, H.-C., Wolfram, J., Mu, C., Zhang, W., Liu, H., et al. (2017). A liposome encapsulated ruthenium polypyridine complex as a theranostic platform for triple-negative breast cancer. Nano Letters, 17(5), 2913–2920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddhartha, V. T., Pindiprolu, S. K. S., Chintamaneni, P. K., Tummala, S., & Nandha, K. S. (2018). RAGE receptor targeted bioconjuguate lipid nanoparticles of diallyl disulfide for improved apoptotic activity in triple negative breast cancer: In vitro studies. Artificial Cells, Nanomedicine, and Biotechnology., 46(2), 387–397.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R., & Lillard, J. W., Jr. (2009). Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology, 86(3), 215–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, A., Dilnawaz, F., Mewar, S., Sharma, U., Jagannathan, N., & Sahoo, S. K. (2011). Composite polymeric magnetic nanoparticles for co-delivery of hydrophobic and hydrophilic anticancer drugs and MRI imaging for cancer therapy. ACS Applied Materials & Interfaces, 3(3), 842–856.

    Article  CAS  Google Scholar 

  • Singh, M. K., Pindiprolu, S. K. S., Sanapalli, B. K. R., Yele, V., & Ganesh, G. (2019). Tumor homing peptide modified liposomes of capecitabine for improved apoptotic activity and HER2 targeted therapy in breast cancer: In vitro studies. RSC Advances, 9(43), 24987–24994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, M. K., Pindiprolu, S. K. S., Sanapalli, B. K. R., Yele, V., & Ganesh, G. (2020). HER2 targeted biological macromolecule modified liposomes for improved efficacy of capecitabine in breast cancer. International Journal of Biological Macromolecules, 150, 631–636.

    Article  CAS  PubMed  Google Scholar 

  • Sola, P., Krishnamurthy, P., Chintamaneni, P. K., Pindiprolu, S., & Kumari, M. (2020). Novel drug delivery systems of β2 adrenoreceptor agonists to suppress SNCA gene expression and mitochondrial oxidative stress in Parkinson’s disease management. Expert Opinion on Drug Delivery, 17, 1119–1132. https://doi.org/10.1080/17425247.2020.1779218

    Article  CAS  PubMed  Google Scholar 

  • Sood, S., Jawahar, N., Jain, K., Gowthamarajan, K., & Nainar, M. S. (2013). Olanzapine loaded cationic solid lipid nanoparticles for improved oral bioavailability. Current Nanoscience, 9(1), 26–34.

    CAS  Google Scholar 

  • Su, W., Wang, H., Wang, S., Liao, Z., Kang, S., Peng, Y., et al. (2012). PEG/RGD-modified magnetic polymeric liposomes for controlled drug release and tumor cell targeting. International Journal of Pharmaceutics, 426(1–2), 170–181.

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan, S. K., Roger, E., Toti, U., Niu, L., Ohlfest, J. R., & Panyam, J. (2013). CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer. Journal of Controlled Release, 171(3), 280–287.

    Article  CAS  PubMed  Google Scholar 

  • Talluri, S. V., Kuppusamy, G., Karri, V. V. S. R., Yamjala, K., Wadhwani, A., Madhunapantula, S. V., et al. (2017). Application of quality-by-design approach to optimize diallyl disulfide-loaded solid lipid nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology., 45(3), 474–488.

    Article  CAS  PubMed  Google Scholar 

  • Tang, J., Li, B., Howard, C. B., Mahler, S. M., Thurecht, K. J., Wu, Y., et al. (2019). Multifunctional lipid-coated calcium phosphate nanoplatforms for complete inhibition of large triple negative breast cancer via targeted combined therapy. Biomaterials, 216, 119232.

    Article  CAS  PubMed  Google Scholar 

  • Torchilin, V. P. (2005). Lipid-core micelles for targeted drug delivery. Current Drug Delivery, 2(4), 319–327.

    Article  CAS  PubMed  Google Scholar 

  • Torchilin, V. P. (2010). Passive and active drug targeting: Drug delivery to tumors as an example. In Drug delivery (pp. 3–53). Springer.

    Chapter  Google Scholar 

  • Torchilin, V. (2011). Tumor delivery of macromolecular drugs based on the EPR effect. Advanced Drug Delivery Reviews, 63(3), 131–135.

    Article  CAS  PubMed  Google Scholar 

  • Torchilin, P. V., Torchilin, V., Torchilin, V., & Weissig, V. (2003). Liposomes: A practical approach (Vol. 264). Oxford University Press.

    Google Scholar 

  • Vemuri, S., & Rhodes, C. (1995). Preparation and characterization of liposomes as therapeutic delivery systems: A review. Pharmaceutica Acta Helvetiae, 70(2), 95–111.

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov, S., & Wei, X. (2012). Cancer stem cells and drug resistance: The potential of nanomedicine. Nanomedicine, 7(4), 597–615.

    Article  CAS  PubMed  Google Scholar 

  • Wang, R. A., Li, Z. S., Zhang, H. Z., Zheng, P. J., Li, Q. L., Shi, J. G., et al. (2013). Invasive cancers are not necessarily from preformed in situ tumours—An alternative way of carcinogenesis from misplaced stem cells. Journal of Cellular and Molecular Medicine, 17(7), 921–926.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ward, P. S., & Thompson, C. B. (2012). Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell, 21(3), 297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber, S., Zimmer, A., & Pardeike, J. (2014). Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: A review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics, 86(1), 7–22.

    Article  CAS  PubMed  Google Scholar 

  • Wicha, M., Dontu, G., Al-Hajj, M., & Clarke, M. (2003). Stem cells in normal breast development and breast cancer. Breast Cancer Research, 5(S1), 50.

    Article  PubMed Central  Google Scholar 

  • Xie, Z., Fan, T., An, J., Choi, W., Duo, Y., Ge, Y., et al. (2020). Emerging combination strategies with phototherapy in cancer nanomedicine. Chemical Society Reviews, 49, 8065–8087.

    Article  CAS  PubMed  Google Scholar 

  • Yang, D., Li, C., & Lin, J. (2015). Multimodal cancer imaging using lanthanide-based upconversion nanoparticles. Nanomedicine, 10(16), 2573–2591.

    Article  CAS  PubMed  Google Scholar 

  • Yin, J., Cao, H., Wang, H., Sun, K., Li, Y., & Zhang, Z. (2020). Phospholipid membrane-decorated deep-penetrated nanocatalase relieve tumor hypoxia to enhance chemo-photodynamic therapy. Acta Pharmaceutica Sinica B, 10, 2246–2257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yingchoncharoen, P., Kalinowski, D. S., & Richardson, D. R. (2016). Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come. Pharmacological Reviews, 68(3), 701–787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, H.-J., Lee, H.-S., Lim, J.-Y., & Park, J.-H. (2017). Liposomal indocyanine green for enhanced photothermal therapy. ACS Applied Materials & Interfaces, 9(7), 5683–5691.

    Article  CAS  Google Scholar 

  • You, J., Zhao, J., Wen, X., Wu, C., Huang, Q., Guan, F., et al. (2015). Chemoradiation therapy using cyclopamine-loaded liquid–lipid nanoparticles and lutetium-177-labeled core-crosslinked polymeric micelles. Journal of Controlled Release, 202, 40–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Zhang, H., Wang, X., Wang, J., Zhang, X., & Zhang, Q. (2012). The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles. Biomaterials, 33(2), 679–691.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Q., Zhao, J., Hu, H., Yan, Y., Hu, X., Zhou, K., et al. (2019). Construction and in vitro and in vivo evaluation of folic acid-modified nanostructured lipid carriers loaded with paclitaxel and chlorin e6. International Journal of Pharmaceutics, 569, 118595.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, F., Ming, J., Zhou, Y., & Fan, L. (2016). Inhibition of Glut1 by WZB117 sensitizes radioresistant breast cancer cells to irradiation. Cancer Chemotherapy and Pharmacology, 77(5), 963–972.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pindiprolu, S.K.S.S., Krishnamurthy, P.T., Chintamaneni, P.K., Ammu, V.V.V.R.K., Garikapati, K.K. (2021). Recent Advances in Lipid-Based Nanoformulations for Breast Cancer Theranostics. In: Saravanan, M., Barabadi, H. (eds) Cancer Nanotheranostics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-76263-6_7

Download citation

Publish with us

Policies and ethics