Skip to main content

Basic Mechanisms of Transcranial Alternating Current and Random Noise Stimulation

  • Chapter
  • First Online:
Transcranial Direct Current Stimulation in Neuropsychiatric Disorders

Abstract

Through neuromodulation of neural activity, transcranial alternating current stimulation (tACS) interacts with neural oscillations in a frequency- and phase-specific manner, thereby influencing human brain function. Currents are applied at the scalp with intensities up to 4 mA peak to peak (except for electroconvulsive therapy with much higher intensities), for minutes and rarely hours/day. Possible physical variations of the stimulation spectrum are indefinite, transcranial random noise stimulation (tRNS) representing a simple example. Animal experiments have demonstrated in what way neurons react to invasively and transcranially applied alternating currents. Such findings, supported by modelling studies, studies on human physiology and behaviour, invasive stimulation and recording from epilepsy patients helped to understand how we can entrain oscillations in the human brain. In future, the methods might increasingly be applicable in the therapy of disorders with malfunctioning brain oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn S, Mellin JM, Alagapan S, Alexander ML, Gilmore JH, Jarskog LF, Fröhlich F. Targeting reduced neural oscillations in patients with schizophrenia by transcranial alternating current stimulation. Neuroimage. 2019;186:126–36.

    Article  PubMed  Google Scholar 

  2. Alekseichuk I, Diers K, Paulus W, Antal A. Transcranial electrical stimulation of the occipital cortex during visual perception modifies the magnitude of BOLD activity: a combined tES-fMRI approach. Neuroimage. 2016;140:110–7.

    Article  PubMed  Google Scholar 

  3. Alekseichuk I, Turi Z, Amador de Lara G, Antal A, Paulus W. Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex. Curr Biol. 2016;26:1513–21.

    Article  CAS  PubMed  Google Scholar 

  4. Alekseichuk I, Falchier AY, Linn G, Xu T, Milham MP, Schroeder CE, Opitz A. Electric field dynamics in the brain during multi-electrode transcranial electric stimulation. Nat Commun. 2019;10:2573.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alekseichuk I, Turi Z, Veit S, Paulus W. Model-driven neuromodulation of the right posterior region promotes encoding of long-term memories. Brain Stimul. 2020;13:474–83.

    Article  PubMed  Google Scholar 

  6. Alexander ML, Alagapan S, Lugo CE, Mellin JM, Lustenberger C, Rubinow DR, Fröhlich F. Double-blind, randomized pilot clinical trial targeting alpha oscillations with transcranial alternating current stimulation (tACS) for the treatment of major depressive disorder (MDD). Transl Psychiatry. 2019;9:106–10.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ambrus GG, Zimmer M, Kincses TZ, Harza I, Kovacs G, Paulus W, Antal A. The enhancement of cortical excitability over the DLPFC before and during training impairs categorization in the prototype distortion task. Neuropsychologia. 2011;49:1974–80.

    Article  PubMed  Google Scholar 

  8. Ambrus GG, Antal A, Paulus W. Comparing cutaneous perception induced by electrical stimulation using rectangular and round shaped electrodes. Clin Neurophysiol. 2011;122:803–7.

    Article  PubMed  Google Scholar 

  9. Antal A, Herrmann CS. Transcranial alternating current and random noise stimulation: possible mechanisms. Neural Plast. 2016;2016:3616807.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Antal A, Boros K, Poreisz C, Chaieb L, Terney D, Paulus W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul. 2008;1:97–105.

    Article  PubMed  Google Scholar 

  11. Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, Cohen LG, Dowthwaite G, Ellrich J, Flöel A, Fregni F, George MS, Hamilton R, Haueisen J, Herrmann CS, Hummel FC, Lefaucheur JP, Liebetanz D, Loo CK, CD MC, Miniussi C, Miranda PC, Moliadze V, Nitsche MA, Nowak R, Padberg F, Pascual-Leone A, Poppendieck W, Priori A, Rossi S, Rossini PM, Rothwell J, Rueger MA, Ruffini G, Schellhorn K, Siebner HR, Ugawa Y, Wexler A, Ziemann U, Hallett M, Paulus W. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017;128:1774–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Antonakakis M, Schrader S, Wollbrink A, Oostenveld R, Rampp S, Haueisen J, Wolters CH. The effect of stimulation type, head modeling, and combined EEG and MEG on the source reconstruction of the somatosensory P20/N20 component. Hum Brain Mapp. 2019;40:5011–28.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bikson M, Ghodratitoostani I, Grabner RH, Hartwigsen G, Hirata A, Kirton A, Knotkova H, Krupitsky E, Marangolo P, Hanlon CA, Woods AJ, Gillick BT, Charvet L, Lamm C, Madeo G, Holczer A, Almeida J, Antal A, Ay MR, Baeken C, Blumberger DM, Campanella S, Camprodon JA, Christiansen L, Colleen L, Crinion J, Fitzgerald P, Gallimberti L, Ghobadi-Azbari P, Nakamura-Palacios EM, Potok W, Praharaj SK, Ruff CC, Schlaug G, Siebner HR, Stagg CJ, Thielscher A, Wenderoth N, Yuan TF, Zhang X, Ekhtiari H. Guidelines for TMS/tES clinical services and research through the COVID-19 pandemic. Brain Stimul. 2020;13(4):1124–49.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bland NS, Sale MV. Current challenges: the ups and downs of tACS. Exp Brain Res. 2019;237:3071–88.

    Article  PubMed  Google Scholar 

  15. Brittain JS, Probert-Smith P, Aziz T, Brown P. Tremor suppression by rhythmic transcranial current stimulation. Curr Biol. 2013;23:436–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cabral-Calderin Y, Schmidt-Samoa C, Wilke M. Rhythmic gamma stimulation affects bistable perception. J Cogn Neurosci. 2015;27:1298–307.

    Article  PubMed  Google Scholar 

  17. Cabral-Calderin Y, Anne Weinrich C, Schmidt-Samoa C, Poland E, Dechent P, Bähr M, Wilke M. Transcranial alternating current stimulation affects the BOLD signal in a frequency and task-dependent manner. Hum Brain Mapp. 2016;37:94–121.

    Article  PubMed  Google Scholar 

  18. Canolty R, Edwards E, Dalal S, Soltani M, Nagarajan S, Kirsch H, Berger MS, Barbaro RT, Knight R. High gamma power is phase-locked to theta oscillations in human neocortex. Sci Rep. 2006;313:1626–8.

    CAS  Google Scholar 

  19. Chaieb L, Antal A, Paulus W. Transcranial alternating current stimulation in the low kHz range increases motor cortex excitability. Restor Neurol Neurosci. 2011;29:167–75.

    PubMed  Google Scholar 

  20. Chaieb L, Antal A, Paulus W. Transcranial random noise stimulation-induced plasticity is NMDA-receptor independent but sodium-channel blocker and benzodiazepines sensitive. Front Neurosci. 2015;9:1–9.

    Article  Google Scholar 

  21. Chan CY, Hounsgaard J, Nicholson C. Effects of electric fields on transmembrane potential and excitability of turtle cerebellar Purkinje cells in vitro. J Physiol. 1988;402:751–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M. Gyri -precise head model of transcranial DC stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009;2:201–7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Deans JK, Powell AD, Jefferys JGR. Sensitivity of coherent oscillations in rat hippocampus to AC electric fields. J Physiol. 2007;583:555–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eggert T, Dorn H, Sauter C, Nitsche MA, Bajbouj M, Danker-Hopfe H. No effects of slow oscillatory transcranial direct current stimulation (tDCS) on sleep-dependent memory consolidation in healthy elderly subjects. Brain Stimul. 2013;6:938–45.

    Article  PubMed  Google Scholar 

  25. Fertonani A, Miniussi C. Transcranial electrical stimulation: what we know and do not know about mechanisms. Neuroscientist. 2017;23:109–23.

    Article  PubMed  Google Scholar 

  26. Fröhlich F, McCormick D. Endogenous electric fields may guide neocortical network activity. Neuron. 2010;67:129–43.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fröhlich F, Sellers KK, Cordle AL. Targeting the neurophysiology of cognitive systems with transcranial alternating current stimulation. Expert Rev Neurother. 2015;15:145–67.

    Article  PubMed  Google Scholar 

  28. Gall C, Schmidt S, Schittkowski MP, Antal A, Ambrus GG, Paulus W, Dannhauer M, Michalik R, Mante A, Bola M, Lux A, Kropf S, Brandt SA, Sabel BA. Alternating current stimulation for vision restoration after optic nerve damage: a randomized clinical trial. PLoS One. 2016;11:e0156134.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gildemeister M, Koch H, Schindler B. Eine Vorrichtung zur Erzeugung sinusreiner Wechselströme für physiologische Zwecke. Pflügers Arch. 1944;247:360–5.

    Article  Google Scholar 

  30. Grabner RH, Krenn J, Fink A, Arendasy M, Benedek M. Effects of alpha and gamma transcranial alternating current stimulation (tACS) on verbal creativity and intelligence test performance. Neuropsychologia. 2018;118:91–8.

    Article  PubMed  Google Scholar 

  31. Groppa S, Bergmann TO, Siems C, Mölle M, Marshall L, Siebner HR. Slow-oscillatory transcranial direct current stimulation can induce bidirectional shifts in motor cortical excitability in awake humans. Neuroscience. 2010;166:1219–25.

    Article  CAS  PubMed  Google Scholar 

  32. Grossman N, Bono D, Dedic N, Kodandaramaiah SB, Rudenko A, Suk HJ, Cassara AM, Neufeld E, Kuster N, Tsai LH, Pascual-Leone A, Boyden ES. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell. 2017;169:1029–41.e1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grundey J, Barlay J, Batsikadze G, Kuo MF, Paulus W, Nitsche M. Nicotine modulates human brain plasticity via calcium-dependent mechanisms. J Physiol. 2018;596:5429–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Helfrich RF, Schneider TR, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS. Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol. 2014;24:333–9.

    Article  CAS  PubMed  Google Scholar 

  35. Helfrich RF, Knepper H, Nolte G, Strüber D, Rach S, Herrmann CS, Schneider TR, Engel AK. Selective modulation of interhemispheric functional connectivity by HD-tACS shapes perception. PLoS Biol. 2014;12:e1002031.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Herpich F, Melnick MD, Agosta S, Huxlin KR, Tadin D, Battelli L. Boosting learning efficacy with noninvasive brain stimulation in intact and brain-damaged humans. J Neurosci. 2019;39:5551–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Holdefer RN, Sadleir R, Russell MJ. Predicted current densities in the brain during transcranial electrical stimulation. Clin Neurophysiol. 2006;117:1388–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang Y, Parra LC. Can transcranial electric stimulation with multiple electrodes reach deep targets? Brain Stimul. 2019;12:30–40.

    Article  PubMed  Google Scholar 

  39. Huang Y, Liu AA, Lafon B, Friedman D, Dayan M, Wang X, Bikson M, Doyle WK, Devinsky O, Parra LC. Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation. Elife. 2017;6:e18834.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jaušovec N, Jaušovec K. Increasing working memory capacity with theta transcranial alternating current stimulation (tACS). Biol Psychol. 2014;96:42–7.

    Article  PubMed  Google Scholar 

  41. Jensen O, Colgin L. Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci. 2007;11:267–9.

    Article  PubMed  Google Scholar 

  42. Jones KT, Arciniega H, Berryhill ME. Replacing tDCS with theta tACS provides selective, but not general WM benefits. Brain Res. 2019;1720:146324.

    Article  CAS  PubMed  Google Scholar 

  43. Joos K, De Ridder D, Vanneste S. The differential effect of low- versus high-frequency random noise stimulation in the treatment of tinnitus. Exp Brain Res. 2015;233:1433–40.

    Article  PubMed  Google Scholar 

  44. Kasten FH, Herrmann CS. Recovering brain dynamics during concurrent tACS-M/EEG: an overview of analysis approaches and their methodological and interpretational pitfalls. Brain Topogr. 2019;32(6):1013–19.

    Google Scholar 

  45. Ketz N, Jones AP, Bryant NB, Clark VP, Pilly PK. Closed-loop slow-wave tACS improves sleep-dependent long-term memory generalization by modulating endogenous oscillations. J Neurosci. 2018;38:7314–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Krause V, Wach C, Südmeyer M, Ferrea S, Schnitzler A, Pollok B. Cortico-muscular coupling and motor performance are modulated by 20 Hz transcranial alternating current stimulation (tACS) in Parkinson’s disease. Front Hum Neurosci. 2013;7:928.

    PubMed  Google Scholar 

  47. Krause MR, Vieira PG, Csorba BA, Pilly PK, Pack CC. Transcranial alternating current stimulation entrains single-neuron activity in the primate brain. Proc Natl Acad Sci U S A. 2019;116:5747–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu A, Voroslakos M, Kronberg G, Henin S, Krause MR, Huang Y, Opitz A, Mehta A, Pack CC, Krekelberg B, Berenyi A, Parra LC, Melloni L, Devinsky O, Buzsaki G. Immediate neurophysiological effects of transcranial electrical stimulation. Nat Commun. 2018;9:5092.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lorenz R, Simmons LE, Monti RP, Arthur JL, Limal S, Laakso I, Leech R, Violante IR. Efficiently searching through large tACS parameter spaces using closed-loop Bayesian optimization. Brain Stimul. 2019;12:1484–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lustenberger C, Boyle MR, Alagapan S, Mellin JM, Vaughn BV, Fröhlich F. Feedback-controlled transcranial alternating current stimulation reveals a functional role of sleep spindles in motor memory consolidation. Curr Biol. 2016;26:2127–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Marshall L, Helgadottir H, Molle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature. 2006;444:610–3.

    Article  CAS  PubMed  Google Scholar 

  52. Mehta AR, Brittain JS, Brown P. The selective influence of rhythmic cortical versus cerebellar transcranial stimulation on human physiological tremor. J Neurosci. 2014;34:7501–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mohsen S, Mahmoudian S, Talebian S, Pourbakht A. Multisite transcranial random noise stimulation (tRNS) modulates the distress network activity and oscillatory powers in subjects with chronic tinnitus. J Clin Neurosci. 2019;67:178–84.

    Article  PubMed  Google Scholar 

  54. Moliadze V, Antal A, Paulus W. Boosting brain excitability by transcranial high frequency stimulation in the ripple range. J Physiol. 2010;588:4891–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moliadze V, Atalay D, Antal A, Paulus W. Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimul. 2012;5:505–11.

    Article  PubMed  Google Scholar 

  56. Neuling T, Rach S, Herrmann C. Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states. Front Hum Neurosci. 2013;7:161.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Neuling T, Ruhnau P, Fuscà M, Demarchi G, Herrmann CS, Weisz N. Neuroimage. Friends, not foes: Magnetoencephalography as a tool to uncover brain dynamics during transcranial alternating current stimulation. 2015;118:406–13.

    Google Scholar 

  58. Opitz A, Falchier A, Yan CG, Yeagle EM, Linn GS, Megevand P, Thielscher A, Deborah AR, Milham MP, Mehta AD, Schroeder CE. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates. Sci Rep. 2016;6:31236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ozen S, Sirota A, Belluscio M, Anastassiou C, Stark E, Koch C. Transcranial electric stimulation entrains cortical neuronal populations in rats. J Neurosci. 2010;30:11476–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Paulus W. On the difficulties of separating retinal from cortical origins of phosphenes when using transcranial alternating current stimulation (tACS). Clin Neurophysiol. 2010;121:987–91.

    Article  PubMed  Google Scholar 

  61. Polania R, Nitsche M, Korman C, Batsikadze G, Paulus W. The importance of timing in segregated theta phase-coupling for cognitive performance. Curr Biol. 2012;22:1314–8.

    Article  CAS  PubMed  Google Scholar 

  62. Radman T, Su Y, An JH, Parra LC, Bikson M. Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects. J Neurosci. 2007;27:3030–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Reato D, Rahman A, Biksn M, Parra L. Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J Neurosci. 2010;30:15067–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Reato D, Rahman A, Bikson M, Parra L. Effects of weak transcranial alternating current stimulation on brain activity – a review of known mechanisms from animal studies. Front Hum Neurosci. 2013;7:1–8.

    Article  Google Scholar 

  65. Reinhart RMG, Nguyen JA. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat Neurosci. 2019;22:820–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sabel BA, Thut G, Haueisen J, Henrich-Noack P, Herrmann CS, Hunold A, Kammer T, Matteo B, Sergeeva EG, Waleszczyk W, Antal A. Vision modulation, plasticity and restoration using non-invasive brain stimulation – an IFCN sponsered review. Clin Neurophysiol. 2020;131:887–91.

    Article  PubMed  Google Scholar 

  67. Salchow C, Strohmeier D, Klee S, Jannek D, Schiecke K, Witte H, Nehorai A, Haueisen J. Rod driven frequency entrainment and resonance phenomena. Front Hum Neurosci. 2016;10:413–5.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Schoen I, Fromherz P. Extracellular stimulation of mammalian neurons through repetitive activation of Na+ channels by weak capacitive currents on a silicon chip. J Neurophysiol. 2008;100:346–57.

    Article  PubMed  Google Scholar 

  69. Schutter DJ, Hortensius R. Retinal origin of phosphenes to transcranial alternating current stimulation. Clin Neurophysiol. 2010;121:1080–4.

    Article  PubMed  Google Scholar 

  70. Tang C, Yo F, Cheng G, Gao D, Fu F, Yang G, Dong X. Correlation between structure and resistivity variations of the live human skull. IEEE Trans Biomed Eng. 2008;55:2286–92.

    Article  PubMed  Google Scholar 

  71. Terney D, Chaieb L, Moliadze V, Antal A, Paulus W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci. 2008;28:14147–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vanneste S, Fregni F, De Ridder D. Head-to-head comparison of transcranial random noise stimulation, transcranial AC stimulation, and transcranial DC stimulation for tinnitus. Front Psych. 2013;4:31–3.

    Google Scholar 

  73. Voroslakos M, Takeuchi Y, Brinyiczki K, Zombori T, Oliva A, Fernandez-Ruiz A, Kozak G, Kincses ZT, Ivanyi B, Buzsaki G, Berenyi A. Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nat Commun. 2018;9:483–90.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Voss U, Holzmann R, Hobson A, Paulus W, Koppehele-Gossel J, Klimke A, Nitsche MA. Induction of self awareness in dreams through frontal low current stimulation of gamma activity. Nat Neurosci. 2014;17:810–2.

    Article  CAS  PubMed  Google Scholar 

  75. Vossen A, Gross J, Thut G. Alpha Power Increase After Transcranial Alternating Current Stimulation at Alpha Frequency (alpha-tACS) Reflects Plastic Changes Rather Than Entrainment. Brain Stimul. 2015;8(3):499–508

    Google Scholar 

  76. Vosskuhl J, Huster RJ, Herrmann CS. BOLD signal effects of transcranial alternating current stimulation (tACS) in the alpha range: a concurrent tACS-fMRI study. Neuroimage. 2016;140:118–25.

    Article  PubMed  Google Scholar 

  77. Wischnewski M, Engelhardt M, Salehinejad MA, Schutter DJLG, Kuo MF, Nitsche MA. NMDA receptor-mediated motor cortex plasticity after 20 Hz transcranial alternating current stimulation. Cereb Cortex. 2019;29:2924–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Ministry for Science and Culture of Lower Saxony, ZN 3456 awarded to AA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Antal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Antal, A., Grossman, N., Paulus, W. (2021). Basic Mechanisms of Transcranial Alternating Current and Random Noise Stimulation. In: Brunoni, A.R., Nitsche, M.A., Loo, C.K. (eds) Transcranial Direct Current Stimulation in Neuropsychiatric Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-76136-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76136-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76135-6

  • Online ISBN: 978-3-030-76136-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics