Skip to main content

Role of Jasmonic and Salicylic Acid Signaling in Plants Under UV-B Stress

  • Chapter
  • First Online:
Jasmonates and Salicylates Signaling in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Jasmonic acid (JA) and Salicylic acid (SA) are the essential plant hormones responsible for the plant’s proper growth and development. These signaling molecules have a significant role in plants along with the regulation of defense mechanisms locally and systemically under various biotic and abiotic stresses. Among abiotic stresses, ultraviolet-B (UV-B) radiation coming to the Earth’s surface due to depletion of the stratospheric ozone layer is of serious concern to all living organisms. UV-B is an important factor, negatively influencing the growth and yield of plants on this Earth, ultimately posing a threat to food security. Therefore, understanding the signaling behavior of JA and SA under UV-B stress will be definitely beneficial for the maintenance of agricultural productivity worldwide. Plant responses related to morphological, biochemical, physiological, growth, and yield have been extensively studied under UV-B stress, although studies conducted with UV-B exposure and its impact on plant’s endogenous JA and SA contents are limited. On the other hand, some studies have also explored the regulatory impact of exogenously supplied JA and SA to the plants. More accumulation of endogenous JA and SA contents has been observed under elevated UV-B exposure in plants. JA and SA play synergistic as well as antagonistic roles during the regulation of defense responses under various stresses. An inverse relationship between JA and SA are well established under UV-B stress in pea, soybean, and mungbean cultivars. Increased JA content provided better plant resistance while increased SA level imposed higher oxidative stress to plants when exposed to elevated UV-B. Oxidative stress caused by the higher accumulation of SA is well correlated with its inhibitory impact on catalase and ascorbate peroxidase activity leading to more generation of Reactive oxygen species (ROS) under UV-B exposure. JA has an inhibitory effect on the accumulation of SA by the regulation of NAC transcription factors like ANAC019/055/072 where MYC2 binds to the promoter regions of these NAC transcription factors, which further inhibits ISOCHORISMATE SYNTHASE1 (ICS1) expression, which is responsible for initiating the expression of BSMT1 (BENZOIC ACID/SA CARBOXYL MEHYLTRANSFERASE 1) during SA biosynthesis. Therefore, the present chapter will focus on the effect of UV-B stress in plants with special emphasis on JA and SA signaling, their antagonistic and synergistic behavior in plant defense, and ROS interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya BR, Assmann SM (2009) Hormone interactions in stomatal function. Plant Mol Biol 69:451–462

    Article  CAS  PubMed  Google Scholar 

  • A-H-Mackerness S, Jordan BR (1999) Changes in gene expression in response to UV-B induced stress. In: Handbook of Plant and Crop Stress (ed. M. Pessarakli), pp 749–768. Marcel Dekker, NY

    Google Scholar 

  • Aldridge DC, Galt S, Giles D, Turner WB (1971) Metabolites of Lasiodiplodiatheobromae. J Chem Soc 1971:1623–1627

    Google Scholar 

  • Ali N, Ganai BA, Kamili AN, Bhat AA, Mir ZA, Bhat JA, Tyagi A, Islam ST, Mushtaq M, Yadav P, Rawat S, Grove A (2018) Pathogenesis-related proteins and peptides as promising tools forengineering plants with multiple stress tolerance. Microbiol Res 212–213:29–37

    Article  PubMed  CAS  Google Scholar 

  • Anderson JG, Wilmouth DM, Smith JB, Sayers DS (2012) UV dosage levels in summer: increased risk of ozone loss from convectively injected water vapour. Science 337:835–839

    Article  CAS  PubMed  Google Scholar 

  • Anjum SA, Wang L, Farooq M, Khan I, Xue L (2011) Methyl jasmonate-induced alteration in lipid peroxidation, antioxidative defence system and yield in soybean under drought. J Agron Crop Sci 197:296–301

    Article  CAS  Google Scholar 

  • Bandurska H, Cieślak M (2013) The interactive effect of water deficit and UV-B radiation on salicylic acid accumulation in barley roots and leaves. Environ Exp Bot 94:9–18

    Article  CAS  Google Scholar 

  • Bartoli CG, Casalongué CA, Simontacchi M, Marquez-Garciac B, Foyer CH (2013) Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environ Exp Bot 94:73–88

    Article  CAS  Google Scholar 

  • Bellés JM, Garro R, Fayos J, Navarro P, Primo J, Conejero V (2007) Gentisic acid as a pathogen-inducible signal, additional to salicylic acid for activation of plant defenses in tomato. MPMI https://doi.org/10.1094/MPMI.1999.12.3.227

  • Bostock MR (2005) Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu Rev Phytopathol 43:545–580

    Article  CAS  PubMed  Google Scholar 

  • Browse J (2009) Jasmonate passes muster: a receptor and targets for the defense hormone. Annu Rev Plant Biol 60:183–205

    Article  CAS  PubMed  Google Scholar 

  • Cao SF, Zheng YH, Wang KT, Jin P, Rui HJ (2009) Methyl jasmonate reduces chilling injury and enhances antioxidant enzyme activity in postharvest loquat fruit. Food Chem 115:1458–1463

    Article  CAS  Google Scholar 

  • Catinot J, Buchala A, Abou-Mansour E, Métraux JP (2008) Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotianabenthamiana. FEBS Lett 582:473–478

    Article  CAS  PubMed  Google Scholar 

  • Chang C-Y et al (2008) Effect of pH on Fenton process using estimation of hydroxyl radical with salicylic acid as trapping reagent. Water Sci Technol 58(4):873–879

    Article  CAS  PubMed  Google Scholar 

  • Chipperfield MP, Dhomse SS, Feng W, McKenzie RL, Velders GJM, Pyle JA (2015) Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol. Nat Commun 6:7233. https://doi.org/10.1038/ncomms8233

    Article  CAS  PubMed  Google Scholar 

  • Choudhary KK, Agrawal SB (2014a) Cultivar specificity of tropical mung bean (Vigna radiate L.) to elevated ultraviolet-B: changes in antioxidative defense system, nitrogenmetabolism and accumulation of jasmonic and salicylic acids. Environ Exp Bot 99:122–132

    Article  CAS  Google Scholar 

  • Choudhary KK, Agrawal SB (2014b) Ultraviolet-B induced changes in morphological, physiological, and biochemical parameters of two cultivars of pea (PisumsativumL.). Ecotox Environ Safe 100:178–187

    Article  CAS  Google Scholar 

  • Choudhary KK, Agrawal SB (2015) Effect of elevated ultraviolet-B on four tropical soybean cultivars: quantitative and qualitative aspects with special emphasis on gas exchange, chlorophyll fluorescence, biomass and yield. Acta Physiol Plant 37. https://doi.org/10.1007/s11738-015-1780-4

  • Choudhary KK, Agrawal SB (2016) Assessment of fatty acid profile and seed mineral nutrients of two soybean (Glycine max L.) cultivars under elevated UV-B: role of ROS Pigments and Antioxidants. Photochem Photobiol 92:134–143

    Article  CAS  PubMed  Google Scholar 

  • Choudhary KK, Agrawal SB (2017) Effect of UV-B radiation on leguminous plants. In: Lichtfouse E (ed) Sustainable agricultural reviews. Springer, Springer International Publishing, Switzerland, pp 115–162

    Google Scholar 

  • Choudhary KK, Chaudhary N, Agrawal SB, Agrawal M (2017) Reactive oxygen species: Generation, damage, and quenching in plants during stress. In: Singh VP, Singh S, Tripathi DK, Prasad SM, Chauhan DK (ed) Reactive Oxygen Species in Plants: Boon Or Bane—Revisiting the Role of ROS. John Wiley & Sons Ltd. pp 89–115

    Google Scholar 

  • Choudhary KK, Pandey D, Agrawal SB (2013) Deterioration of rhizospheric soil health due to elevated ultraviolet-B. Arch Agron Soil Sci 59:1419–1437

    Article  CAS  Google Scholar 

  • D’Auria JC et al (2003) The SABATH family of MTS in Arabidopsis thaliana and other plant species. In: Romeo J (ed) Integrative phytochemistry: from ethnobotany to molecular ecology, vol. 37. Elsevier, pp 253–283

    Google Scholar 

  • Dathe W, Rönsch H, Preiss A, Schade W, Sembdner G, Schreiber K (1981) Endogenous plant hormones of the broad bean, Viciafaba L. (-)-Jasmonic acid, a plant growth inhibitor in pericarp. Planta 155:530–535

    Article  Google Scholar 

  • Dean JV, Delaney SP (2008) Metabolism of salicylic acid in wild-type, ugt74f1 and ugt74f2 glucosyltransferase mutants of Arabidopsis thaliana. Physiol Plant 132:417–425

    Article  CAS  PubMed  Google Scholar 

  • Demole E, Lederer E, Mercier D (1962) Isolementet determination de la structure du jasmonate de methyle, constituent odorant characteristique de l’essence de jasmin [Isolation and determination of the structure of methyl jasmonate, the aromatic constituent [that is] characteristic of the essential oil of jasmine]. Helv Chim Acta (in French) 45:675–685

    Article  CAS  Google Scholar 

  • Duan L, Liu H, Li X, Xiao J, Wang S (2014) Multiple phytohormones and phytoalexins are involved in disease resistance to Magnaporthe oryzae invaded from roots in rice. Physiol Plant 152:486–500. https://doi.org/10.1111/ppl.12192

  • Du HM, Liang Y, Pei KQ, Ma KP (2011) UV radiation-responsive proteins in rice leaves: a proteomic analysis. Plant Cell Physiol 52:306–316

    Article  CAS  PubMed  Google Scholar 

  • Durner J, Klessig DF (1995) Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. P Natl Acad Sci USA 92:11312–11316

    Article  CAS  Google Scholar 

  • Farman JC, Gardiner BG, Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315:207–210

    Article  CAS  Google Scholar 

  • Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4:129–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fedina I, Nedeva D, Genrgieva K, Velitchkova M (2009) Methyl jasmonate counteracts UV-B stress in barley seedlings. J Agron Crop Sci 195:204–212

    Article  CAS  Google Scholar 

  • Fedina IS, Benderliev KM (2000) Response of Scenedesmus incrassatulus to salt stress as affected by methyl jasmonate. Biol Plant 43:625–627

    Article  CAS  Google Scholar 

  • Fujibe T, Watanabe K, Nakajima N, Ohashi Y, Mitsuhara I, Yamamoto KT, Takeuchi Y (2000) Accumulation of pathogenesis-related proteins in tobacco leaves irradiated with UV-B. J Plant Res 113:387–394

    Article  Google Scholar 

  • Garcion C, Métraux JP (2006) Salicylic acid. In: Hedden P, Thomas SG (eds), Plant hormone signaling. Ann Plant Rev, vol. 24. Blackwell Press, Oxford, pp 229–257

    Google Scholar 

  • Gatz C (2013) From pioneers to team players: TGA transcription factors provide a molecular link between different stress pathways. Mol Plant-Microbe Interact 26(2):151–159

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Anjum NA, Gill R, Jha M, Tuteja N, (2015) DNA damage and repair in plants under ultraviolet and ionizing radiations. Sci World J 250158. https://doi.org/10.1155/2015/250158

  • Günal S et al (2019) Sulfation pathways from red to green. J Biol Chem 294:12293–12312

    Article  PubMed  PubMed Central  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Google Scholar 

  • Herrera-Vásquez A, Fonseca A, Ugalde JM, Lamigo L, Seguel A, Moyano TC, Gutierrez RA, Salinos P, Vidal EA, Holuigue L (2020) Transcription factor TGA2 is essential for UV-B stress tolerance controlling oxidative stress in Arabidopsis. Biorxiv. https://doi.org/10.1101/2020.05.24.113589

    Article  Google Scholar 

  • Hong JK, Hwang BK (2005) Induction of enhanced disease resistance and oxidative stress tolerance by over expression of pepper basic PR-1 gene in Arabidopsis. Physiol Plant 124:267–277

    Google Scholar 

  • Hu YR, Jiang YJ, Han X, Wang HP, Pan JJ, Yu DQ (2017) Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones. J Exp Bot 68:1361–1369

    Article  CAS  PubMed  Google Scholar 

  • Johnson C, Boden E, Arias J (2003) Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis. Plant Cell 15(8):1846–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakani VG, Reddy KR, Zhao D, Gao W (2004) Senescence and hyperspectral reflectance of cotton leaves exposed to ultraviolet-B radiation and carbon dioxide. Physiol Plant 121:250–257

    Article  CAS  PubMed  Google Scholar 

  • Kakani VG, Reddy KR, Zhao D, Sailaja K (2003) Field crop responses to ultraviolet-B radiation: a review. Agric Meteorol 120:191–218

    Article  Google Scholar 

  • Karpets YV, Kolupaev YE, Lugovaya AA, Oboznyi AI (2014) Effect of jasmonic acid on the pro-/antioxidant system of wheat coleoptiles as related to hyperthermia tolerance. Russ J Plant Physiol 61:339–346

    Article  CAS  Google Scholar 

  • Kim EH, Kim YS, Park SH, Koo YJ, Choi YD, Chung YY, Lee IJ, Kim JK (2009) Methyl jasmonate reduces grain yield by mediating stress signals to alter spikelet development in rice. Plant Physiol 149:1751–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Delaney TP (2002) Over-expression of TGA5, which encodes a bZIP transcription factor that interacts with NIM1/NPR1, confers SAR-independent resistance in Arabidopsis thaliana to Peronospora parasitica. Plant J 32:151–163

    Article  CAS  PubMed  Google Scholar 

  • Kiribuchi K, Jikumaru Y, Kaku H, Minami E, Hasegawa M, Kodama O, Seto H, Okada K, Nojiri H, Yamane H (2005) Involvement of the basic helix-loop-helix transcription factor RERJ1 in wounding and drought stress responses in rice plants. Biosci Biotechnol Biochem 69:1042–1044

    Article  CAS  PubMed  Google Scholar 

  • Klein M, Papenbrock J (2004) The multi-protein family of Arabidopsis sulphotransferases and their relatives in other plant species. J Exp Bot 55:1809–182094

    Article  CAS  PubMed  Google Scholar 

  • Kovač M, Ravnikar M (1994) The effect of jasmonic acid on the photosynthetic pigments of potato plants grown in vitro. Plant Sci 103:11–17

    Google Scholar 

  • Kovács V, Gondor OK, Szalai G, Janda MT, Pal M (2014) UV-B radiation modifies the acclimation processes in drought or cadmium in wheat. Environ Exp Bot 100:122–131

    Google Scholar 

  • Kumari GJ, Reddy AM, Naik ST, Kumar SG, Prasanthi J, Sriranganayakulu G, Reddy PC, Sudhakar C (2006) Jasmonic acid induced changes in protein pattern, antioxidative enzyme activities and peroxidase isozymes in peanut seedlings. Biol Plantarum 50:219–226

    Article  CAS  Google Scholar 

  • Laube JC, Newland MJ, Hogan C, Brenninkmeijer CAM, Fraser PJ, Martinerie P, Oram DE, Reeves CE, Rockmann T, Schwander J, Witrant E, Sturges WT (2014) Newly detected ozone-depleting substances in the atmosphere. Nat Geosci 7:266–269

    Article  CAS  Google Scholar 

  • Lebel E, Heifetz P, Thorne L, Uknes S, Ryals J, Ward E (1998) Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J 16:223–233

    Article  CAS  PubMed  Google Scholar 

  • Lee A, Cho K, Jang S, Rakwal R, Iwahashi H, Agrawal GK, Shim J, Han O (2004) Inverse correlation between Jasmonic acid and salicylic acid during early wound response in rice. Biochem Bioph Res Comm 318:734–738

    Article  CAS  Google Scholar 

  • Lefevere H, Bauters L, Gheysen G (2020) Salicylic acid biosynthesis in plants. Front Plant Sci 11:338

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L, Sonbol FM, Huot B, Gu Y, Withers J, Mwimba M, Yao J, He SY, Dong X (2016) Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity. Nat Commun 7:13099. https://doi.org/10.1038/ncomms13099

  • Liu X, Chi H, Yue M, Zhang X, Li W, Jia E (2012) The regulation of exogenous jasmonic acid on UV-B stress tolerance in wheat. J Plant Growth Regul 31:436–447

    Article  CAS  Google Scholar 

  • Lou Y, Ren L, Li Z, Cheng H, Zhang T (2011) Effect of elevated ultraviolet-B radiation on microbial biomass carbon and nitrogen in barley rhizosphere soil. Water Air Soil Pollut 219:501–506.

    Google Scholar 

  • Mahdavian K, Kalantari KM, Ghorbanli M, Torkzade M (2008) The effects of salicylic acid on pigment contents in ultraviolet radiation stressed pepper plants. Biol Plant 52(1):170–172

    Article  CAS  Google Scholar 

  • Maskos Z et al (1990) The hydroxylation of the salicylate anion by a Fenton reaction and Γ-radiolysis: a consideration of the respective mechanisms. Free Radic Biol Med 8:153–162

    Article  CAS  PubMed  Google Scholar 

  • Mendez-Bravo A, Ruiz-Herrera LF, Cruz-Ramirez A, Guzman P, Martinez-Trujillo M, Ortiz-Castro R, et al (2019) CONSTITUTIVE TRIPLE RESPONSE1 and PIN2 act in a coordinate manner to support the indeterminate root growth and meristem cell proliferating activity in Arabidopsis seedlings. Plant Sci 280: 175–186. https://doi.org/10.1016/j.plantsci.2018.11.019

  • Meyer A, Miersch O, Buttner C, Dathe W, Sembdner G (1984) Occurrence of the plant growth regulator jasmonic acid in plants. J Plant Growth Regul 3:1–8

    Article  CAS  Google Scholar 

  • Molina MJ, Rowland FS (1974) Stratospheric sink for chlorofluoromethanes: chlorine atom catalysed destruction of ozone. Nature 249:810–812

    Article  CAS  Google Scholar 

  • Moons A, Prinsen E, Bauw G, Van Montagu M (1997) Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots. Plant Cell 9:2243–2259

    Google Scholar 

  • Morales LO, Tategelberg R, Brosché M, Keinänen M, Lindfors A, Aphalo PJ (2010) Effects of solar UV-A and UV-B radiation on gene expression and phenolic accumulation in Betulapendula leaves. Tree Physiol 30:923–934

    Google Scholar 

  • NASA (2015) http://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=30602. Accessed 30 Nov 2020

  • Neill SO, Gould KS (2003) Anthocyanins in leaves: light attenuators or antioxidants? Funct Plant Biol 30:865–873

    Article  CAS  PubMed  Google Scholar 

  • Nobuta K, Okrent RA, Stoutemyer M, Rodibaugh N, Kempema L, Widermuth MC, Innes RW (2007) The GH3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis. Plant Physiol https://doi.org/10.1104/pp.107.097691

  • Park J-E et al (2007) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282:10036–10046

    Article  CAS  PubMed  Google Scholar 

  • Popova L, Ananieva E, Hristova V, Christov K, Georgieva K, Alexieva V, Stoinova ZH (2003) Salicylic acid and methyl jasmonate-induced protection on photosynthesis to paraquat oxidative stress. Bulg J Plant Physiol (Special Issue):133–152.

    Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP, Murr DP, Watkins CB (1997) Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Plant Physiol 115:137–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raskin I (1992a) Salicylate, a new plant hormone. Plant Physiol 99:799–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raskin I (1992b) Role of salicylic acid in plants. Ann Rev Plant Physiol Plant Mol Biol 43:439–463

    Article  CAS  Google Scholar 

  • Rhoads DM, McIntosh L (1992) Salicylic acid regulation of respiration in higher plants: alternative oxidase expression. Plant Cell 4(9):1131–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riemann M, Riemann M, Takano M (2008) Rice JASMONATE RESISTANT 1 is involved in phytochrome and jasmonate signalling. Plant Cell Environ 31:783–792

    Article  CAS  PubMed  Google Scholar 

  • Robson F, Okamoto H, Patrick E, Harris SR, Wasternack C, Brearley C, Turner JG (2010) Jasmonate and phytochrome a signaling in Arabidopsis wound and shade responses are integrated through JAZ1 stability. Plant Cell 22:1143–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez MC, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Ann Rev Plant Biol 61:621–649

    Article  CAS  Google Scholar 

  • Rosas S, Soria S, Correa N, Abdala G (1998) Jasmonic acid stimulates the expression of nod Gene in Rhizobium. Plant Mol Biol 38:1161–1168

    Article  CAS  PubMed  Google Scholar 

  • Ruan J, Zhou Y, Zhou M, Yan J, Khurshid M, Weng W, Cheng J, Zhang K (2019) Jasmonic acid signaling pathway in plants. Int J Mol Sci 20:2479

    Article  CAS  PubMed Central  Google Scholar 

  • Santisree P, Jalli LCL, Bhatnagar-Mathur P, Sharma KK (2020) Emerging roles of salicylic acid and jasmonates in plant abiotic stress responses. In: Roychoudhary A, Tripathi DK (eds), Protective chemical agents in the amelioration of plant abiotic stress: biochemical and molecular perspectives. Wiley Publisher. https://doi.org/10.1002/9781119552154

  • Seguel A, Jelenska J, Herrera-Vasquez A, Marr SK, Joyce MB, Gageshch KR, Shakoor N, Jiang SC, Fonseca A, Wildermuth MC, Greenberg JT, Holuigue L (2018) Prohibitin3 forms complexes with ISOCHORISMATE SYNTHASE 1 to regulate stress-induced salicylic acid biosynthesis in Arabidopsis. Plant Physiol. https://doi.org/10.1104/pp.17.00941

    Article  PubMed  PubMed Central  Google Scholar 

  • Seo JS, Joo J, Kim MJ, Kim YK, Nahm BH, Song SI, Cheong JJ, Lee JS, Kim JK, Choi YD (2011) OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J 65:907–921

    Article  CAS  PubMed  Google Scholar 

  • Shan XY, Zhang YS, Peng W, Wang ZL, Xie DX (2009) Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. J Exp Bot 60:3849–3860

    Article  CAS  PubMed  Google Scholar 

  • Shim JS, Jung C, Lee S, Min K, Lee YW, Choi Y et al (2013) Atmyb44 regulates wrky70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling. Plant J 73(3):483–495

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Mishra S, Kumari R, Agrawal SB (2009) Response of ultraviolet-B and nickel on pigments, metabolites and antioxidants of Pisum sativum L. J Environ Biol 30:677–684

    CAS  PubMed  Google Scholar 

  • Spoel SH, Loake GJ (2011) Redox-based protein modifications: the missing link in plant immune signalling. Curr Opin Plant Biol 14(4):358–364

    Article  CAS  PubMed  Google Scholar 

  • Steffan H et al (1988) N-salicyloyl-aspartic acid: a new phenolic compound in grapevines. Vitis 27:79–86

    CAS  Google Scholar 

  • Surplus SL, Jordan BR, Murphy AM, Carr JP, Thomas B, A-H-Mackerness S (1998) UV-B induced responses in Arabidopsis thaliana: role of salicylic acid and ROS in the regulation of transcripts and acidic PR proteins. Plant Cell Environ 21:685–694

    Google Scholar 

  • Takeda S, Sato F, Ida K, Yamada Y (1991) Nucleotide sequence of a cDNA for osmotin-like protein from cultured tobacco cells. Plant Physiol 97:844–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi K, Gyohda A, Tominaga M, Kawakatsu M, Hatakeyama A, Ishii N, Shimaya K, Nishimura T, Riemann M, Nick P, Hashimoto M, Komano T, Endo A, Okamoto T, Jikumaru Y, Kamiya Y, Terakawa T, Koshiba T (2011) RSOsPR10 expression in response to environmental stresses is regulated antagonistically by jasmonate/ethylene and salicylic acid signaling pathways in rice roots. Plant Cell Physiol 52:1686–1696

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya T, Ohta H, Okawa K, Iwamatsu A, Shimada H, Masuda T, Takamiya KI (1999) Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Proc Natl Acad Sci USA 96:15362–15367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueda J, Kato J (1980) Isolation and identification of a senescence-promoting substance from wormwood (Artemisia absinthium L.). Plant Physiol 66:246–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueda J, Kato J (1982) Identification of jasmonic acid and abscisic acid as senescence-promoting substances from Cleyera ochnacea DC. Agric Biol Chem 46:1975–1976

    CAS  Google Scholar 

  • van Loon LC, Pierpoint WS, Boller T, Conejero V (1994) Recommendations for naming plant pathogenesis-related proteins. Plant Mol Biol Report 12:245–264

    Article  Google Scholar 

  • Vicente MR, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338

    Article  CAS  Google Scholar 

  • Vlot AC et al (2008) Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. Plant J 56:445–456

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Song L, Gong X, Xu J, Li M (2020) Functions of jasmonic acid in plant regulation and response to abiotic stress. Int J Mol Sci 21:1446. https://doi.org/10.3390/ijms21041446

    Article  CAS  PubMed Central  Google Scholar 

  • Wang SY, Bowman L, Ding M (2008) Methyl jasmonate enhances antioxidant activity and flavonoid content in blackberries (Rubus sp.) and promotes antiproliferation of human cancer cells. Food Chem 107:1261–1269

    CAS  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111(6):1021–1058

    Google Scholar 

  • Wasternack C (2014) Action of jasmonates in plant stress responses and development—applied aspects. Biotechnol Adv 32:31–39

    Article  CAS  PubMed  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 417:562–565

    Google Scholar 

  • Yamane H, Takagi H, Abe H, Yokota T, Takahashi N (1981) Identification of jasmonic acid in three species of higher plants and its biological activities. Plant Cell Physiol 22:689–697

    CAS  Google Scholar 

  • Yang J, Duan GH, Li CQ, Liu L, Han GY, Zhang YL, Wang CM (2019) The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Front Plant Sci 10:1349. https://doi.org/10.3389/fpls.2019.01349

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang SH, Wang LJ, Li SH, Duan W, Loescher W, Liang ZC (2007) The effects of UV-B radiation on photosynthesis in relation to photosystem II photochemistry, thermal dissipation and antioxidant defenses in winter wheat (Triticumaestivum L.) seedlings at different growth temperatures. Funct Plant Biol 34:907–917

    Article  CAS  PubMed  Google Scholar 

  • Zander M, Chen S, Imkampe J, Thurow C, Gatz C (2012) Repression of the Arabidopsis thaliana jasmonic acid/ethylene-induced defense pathway by TGA-interacting glutaredoxins depends on their C-terminal ALWL motif. Mol Plant 5:831–840

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wang C, Zhang Y, Sun Y, Mou Z (2012) The Arabidopsis mediated complex subunit 16 positively regulates salicylate-mediated systemic acquired resistance and jasmonate/ethylene-induced defense pathways. Plant Cell. https://doi.org/110.1105/tpc.112.103317

  • Zhang XZ, Ervin EH (2005) Effects of methyl jasmonate and salicylic acid on UV-B tolerance associated with free radical scavenging capacity in poa pratensis. Int Turfgrass Soc Res J 10:910–915

    Google Scholar 

  • Zhang YL, Fan WH, Kinkema M, Li X, Dong X (1999) Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc Natl Acad Sci USA 96:6523–6528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao ML, Wang JN, Shan W, Fan JG, Kuang JF, Wu KQ, Li XP, Chen WX, He FY, Chen JY et al (2013) Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate-induced chilling tolerance in banana fruit. Plant Cell Environ 36:30–51

    Article  PubMed  CAS  Google Scholar 

  • Zheng X-Y, Spivey NW, Zeng W, Liu P-P, Fu ZQ, Klessig DF, He SY, Dong X (2012) Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11:587–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou JM, Trifa Y, Silva H, Pontier D, Lam E, Shah J, Klessig DF (2000) NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol Plant-Microbe Interact 13:191–202

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank, Head, Department of Botany and to Coordinator, Centre of Advanced Study, Department of Botany, Banaras Hindu University, India for providing necessary facilities for a part of our research related to this review.KKC is grateful to startup grant, UGC, New Delhi, and to seed grant, IoE, BHU. MA and SBA are thankful to UGC, CSIR and DST for the financial assistance.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choudhary, K.K., Singh, S., Agrawal, M., Agrawal, S.B. (2021). Role of Jasmonic and Salicylic Acid Signaling in Plants Under UV-B Stress. In: Aftab, T., Yusuf, M. (eds) Jasmonates and Salicylates Signaling in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-75805-9_3

Download citation

Publish with us

Policies and ethics