Skip to main content

CopaDrive: An Integrated ROS Cooperative Driving Test and Validation Framework

  • Chapter
  • First Online:
Robot Operating System (ROS)

Abstract

The development of critical cooperative autonomous vehicle systems is increasingly complex due to the inherent multidimensional problem that encompasses control, communications, and safety. These Cooperating Cyber-Physical Systems (Co-CPS) impose an unprecedented integration between communication, sensing, and actuation actions, alongside the impact of the particular characteristics of the vehicle dynamics and the environment. This significantly increases the complexity of these systems, which, due to their critical safety requirements, must undergo extensive testing and validation to delimit the optimal safety bounds. In this chapter, we present CopaDrive, a cooperative driving framework that uses ROS as an enabler and integrator, to support the development and test of cooperative driving systems in a continuous fashion. CopaDrive integrates a physical simulator (Gazebo) with a traffic generator (Sumo) and a network simulator (OmNet++) to analyze a cooperative driving system. An On-board Unit (OBU) can also replace the network simulator, to create a Hardware in the Loop (HIL) simulation and test the communications’ platforms and safety systems in a simulated scenario. Finally, the developed systems are integrated in the on-board computing platforms that will be deployed at the final prototype vehicles, and validated and demonstrated over a robotic testbed. CopaDrive enabled us to reuse software components and evaluate the cooperative driving system in each step of the development process. In this chapter, the framework’s performance and its potential is demonstrated for each configuration, in line with the development of a cooperative driving system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Waymo LLC, Waymo.com (2020), https://waymo.com/

  2. A. Talebpour, H.S. Mahmassani, Influence of connected and autonomous vehicles on traffic flow stability and throughput. Transp. Res. Part C: Emerg. Technol. 71, 143–163 (2016)

    Article  Google Scholar 

  3. O. Karoui, E. Guerfala, A. Koubaa, M. Khalgui, E. Tovard, N. Wu, A. Al-Ahmari, Z. Li, Performance evaluation of vehicular platoons using Webots. IET Intell. Transp. Syst. 11, 441–449 (2017)

    Article  Google Scholar 

  4. T. Acarman, Y. Liu, U. Ozguner, Intelligent cruise control stop and go with and without communication, in 2006 American Control Conference, Minneapolis, Minnesota, USA (2006), pp. 4356–4361

    Google Scholar 

  5. Z. Li, O. Karoui, A. Koubaa, M. Khalgui, E. Guerfala, E. Tovar, System and method for operating a follower vehicle in a vehicle platoon, Technical Report CISTER-TR-181203, Polytechnic Institute of Porto (ISEP-IPP), Portugal (2018)

    Google Scholar 

  6. N.T. Tangirala, A. Abraham, A. Choudhury, P. Vyas, R. Zhang, J. Dauwels, Analysis of packet drops and channel crowding in vehicle platooning using V2X communication, in 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India (2018), pp. 281–286

    Google Scholar 

  7. ECSSEL JU, SafeCOP project Overview (2016), http://www.safecop.eu/?page/_id=18. Library Catalog: www.safecop.eu

  8. P. Pop, D. Scholle, I. Šljivo, H. Hansson, G. Widforss, M. Rosqvist, Safe cooperating cyber-physical systems using wireless communication: the SafeCOP approach. Microprocess. Microsyst. 53, 42–50 (2017)

    Article  Google Scholar 

  9. S. Medawar, D. Scholle, I. Sljivo, Cooperative safety critical CPS platooning in SafeCOP, in 2017 6th Mediterranean Conference on Embedded Computing (MECO) (IEEE, Bar, Montenegro, 2017), pp. 1–5

    Google Scholar 

  10. B. Vieira, R. Severino, E.V. Filho, A. Koubaa, E. Tovar, COPADRIVe—a realistic simulation framework for cooperative autonomous driving applications, in 8th IEEE International Conference on Connected Vehicles and Expo—ICCVE 2019, Graz, Austria (2019), p. 6

    Google Scholar 

  11. Z. Szendrei, N. Varga, L. Bokor, A SUMO-based hardware-in-the-loop V2X simulation framework for testing and rapid prototyping of cooperative vehicular applications, in Vehicle and Automotive Engineering 2, ed. by K. Jármai, B. Bolló (Springer International Publishing, Cham, 2018), pp. 426–440

    Google Scholar 

  12. S. Wei, Y. Zou, X. Zhang, T. Zhang, X. Li, An integrated longitudinal and lateral vehicle following control system with radar and vehicle-to-vehicle communication. IEEE Trans. Veh. Technol. 68, 1116–1127 (2019)

    Article  Google Scholar 

  13. E.V. Filho, N. Guedes, B. Vieira, M. Mestre, R. Severino, B. Gonçalves, A. Koubaa, E. Tovar, Towards a cooperative robotic platooning testbed, in 2020 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Ponta Delgada, Portugal (2020), pp. 332–337

    Google Scholar 

  14. M. Aeberhard, T. Kühbeck, B. Seidl, et al., Automated driving with ROS at BMW, in ROSCon Hamburg, Hamburg, Germany (Open Robotics, 2015)

    Google Scholar 

  15. Research and Markets, Autonomous commercial vehicle industry report, 2019–2020 (2020). Library Catalog: www.researchandmarkets.com

  16. A. Frost, Ford and AVL demonstrate truck platooning in Turkey (2019), Library Catalog: www.traffictechnologytoday.com. Section: Autonomous Vehicles

  17. S. Harris, What’s the state of autonomous vehicles today? (2020), https://www.orange-business.com/en/blogs/driving-forward-whats-state-autonomous-vehicles-today

  18. MarketsandMarkets, Truck Platooning Market Worth \$2,728.7 Million by 2030 (2018), https://www.oemoffhighway.com/market-analysis/industry-news/on-highway/news/21016578/truck-platooning-market-worth-27287-million-by-2030

  19. R. Hall, C. Chin, Vehicle sorting for platoon formation: impacts on highway entry and throughput. Transp. Res. Part C: Emerg. Technol. 13, 405–420 (2005)

    Article  Google Scholar 

  20. D. Jia, K. Lu, J. Wang, X. Zhang, X. Shen, A survey on platoon-based vehicular cyber-physical systems. IEEE Commun. Surv. Tutor. 18(1), 263–284 (2016)

    Article  Google Scholar 

  21. B. van Arem, C.J.G. van Driel, R. Visser, The impact of cooperative adaptive cruise control on traffic-flow characteristics. IEEE Trans. Intell. Transp. Syst. 7, 429–436 (2006)

    Article  Google Scholar 

  22. P. Kavathekar, Y. Chen, Detc2011, Mesa-47861 draft: vehicle platooning: a brief survey and categorization, Technical Report, Proceedings of The ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, DC, USA, Washington (2011)

    Google Scholar 

  23. S. Gong, L. Du, Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles. Transp. Res. Part B: Methodol. 116, 25–61 (2018)

    Article  Google Scholar 

  24. Erik Larsson, Gustav Sennton, Jeffrey Larson, The vehicle platooning problem: computational complexity and heuristics. Transp. Res. Part C: Emerg. Technol. 60, 258–277 (2015)

    Article  Google Scholar 

  25. S. Tsugawa, S. Kato, Energy ITS: another application of vehicular communications. IEEE Commun. Mag. 48, 120–126 (2010)

    Article  Google Scholar 

  26. Y. Zhang, G. Cao, V-PADA: vehicle-platoon-aware data access in VANETs. IEEE Trans. Veh. Technol. 60(5), 2326–2339 (2011)

    Article  Google Scholar 

  27. F. Dressler, F. Klingler, M. Segata, R.L. Cigno, Cooperative driving and the tactile internet. Proc. IEEE 107, 436–446 (2019)

    Article  Google Scholar 

  28. R. Smith, Directive 2010/41/EU of the European Parliament and of the Council of 7 July 2010, in Core EU Legislation (Macmillan Education UK, London, 2015), pp. 352–355

    Google Scholar 

  29. J. Wan, D. Zhang, S. Zhao, L.T. Yang, J. Lloret, Context-aware vehicular cyber-physical systems with cloud support: architecture, challenges, and solutions. IEEE Commun. Mag. 52, 106–113 (2014)

    Article  Google Scholar 

  30. S. Eichler, Performance evaluation of the IEEE 802.11p WAVE communication standard, in 2007 IEEE 66th Vehicular Technology Conference, Baltimore, MD, USA (2007), pp. 2199–2203

    Google Scholar 

  31. European Telecommunications Standards Institute, ETSI TR 102 638 V1.1.1 Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Definitions, Technical Report V1.1.1, European Telecommunications Standards Institute (2009)

    Google Scholar 

  32. D. Eckhoff, N. Sofra, R. German, A performance study of cooperative awareness in ETSI ITS G5 and IEEE WAVE, in 2013 10th Annual Conference on Wireless On-demand Network Systems and Services (WONS), Banff AB, Canada (2013), pp. 196–200

    Google Scholar 

  33. European Telecommunications Standards Institute, ETSI TS 102 637-1 V1.1.1 Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 1: Functional Requirements, Technical Report, European Telecommunications Standards Institute (2010)

    Google Scholar 

  34. European Telecommunications Standards Institute, ETSI EN 302 637-2 V1.4.0 Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service, Technical Report V1.4.0, ETSI (2018)

    Google Scholar 

  35. I.M. Delimpaltadakis, C.P. Bechlioulis, K.J. Kyriakopoulos, Decentralized platooning with obstacle avoidance for car-like vehicles with limited sensing. IEEE Robot. Autom. Lett. 3, 835–840 (2018)

    Article  Google Scholar 

  36. F. Gao, X. Hu, S.E. Li, K. Li, Q. Sun, Distributed adaptive sliding mode control of vehicular platoon with uncertain interaction topology. IEEE Trans. Ind. Electron. 65, 6352–6361 (2018)

    Article  Google Scholar 

  37. Y. Zheng, S.E. Li, K. Li, F. Borrelli, J.K. Hedrick, Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies. IEEE Trans. Control Syst. Technol. 25, 899–910 (2017)

    Article  Google Scholar 

  38. E. Kayacan, Multiobjective H control for string stability of cooperative adaptive cruise control systems. IEEE Trans. Intell. Veh. 2, 52–61 (2017)

    Article  Google Scholar 

  39. Y. Zheng, S.E. Li, D. Kum, F. Gao, Robust control of heterogeneous vehicular platoon with uncertain dynamics and communication delay. IET Intell. Transp. Syst. 10, 503–513 (2016)

    Article  Google Scholar 

  40. European Telecommunications Standards Institute, ETSI TR 103 299 V2.1.1 Intelligent Transport Systems (ITS); Cooperative Adaptive Cruise Control (CACC); Pre-standardization study, Technical Report, European Telecommunications Standards Institute (2019)

    Google Scholar 

  41. O. Karoui, M. Khalgui, A. Koubâa, E. Guerfala, Z. Li, E. Tovar, Dual mode for vehicular platoon safety: simulation and formal verification. Inf. Sci. 402, 216–232 (2017)

    Article  Google Scholar 

  42. H. Chehardoli, M. Homaeinezhad, Stable control of a heterogeneous platoon of vehicles with switched interaction topology, time-varying communication delay and lag of actuator. Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 231, 4197–4208 (2017)

    Article  Google Scholar 

  43. M. di Bernardo, A. Salvi, S. Santini, Distributed consensus strategy for platooning of vehicles in the presence of time-varying heterogeneous communication delays. IEEE Trans. Intell. Transp. Syst. 16, 102–112 (2015)

    Article  Google Scholar 

  44. Jing Zhou, Huei Peng, Range policy of adaptive cruise control vehicles for improved flow stability and string stability. IEEE Trans. Intell. Transp. Syst. 6, 229–237 (2005)

    Article  Google Scholar 

  45. P. Seiler, A. Pant, K. Hedrick, Disturbance propagation in vehicle strings. IEEE Trans. Autom. Control 49, 1835–1841 (2004)

    Article  MathSciNet  Google Scholar 

  46. S. Öncü, N. van de Wouw, W.P.M.H. Heemels, H. Nijmeijer, String stability of interconnected vehicles under communication constraints, in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI, USA (2012), pp. 2459–2464. ISSN: 0743-1546

    Google Scholar 

  47. Y. Zhao, P. Minero, V. Gupta, On disturbance propagation in leader-follower systems with limited leader information. Automatica 50, 591–598 (2014)

    Article  MathSciNet  Google Scholar 

  48. A. Fermi, M. Mongelli, M. Muselli, E. Ferrari, Identification of safety regions in vehicle platooning via machine learning, in 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS) (IEEE, Imperia, Italy, 2018), pp. 1–4

    Google Scholar 

  49. K. Meinke, Learning-based testing of cyber-physical systems-of-systems: a platooning study, in Computer Performance Engineering, ed. by P. Reinecke, A. Di Marco. Series Title: Lecture Notes in Computer Science, vol. 10497 (Springer International Publishing, Cham, 2017), pp. 135–151

    Google Scholar 

  50. L. Bozzi, L. Di Giuseppe, L. Pomante, M. Pugliese, M. Santic, F. Santucci, W. Tiberti, TinyWIDS: a WPM-based intrusion detection system for TinyOS2.x/802.15.4 wireless sensor networks, in Proceedings of the Fifth Workshop on Cryptography and Security in Computing Systems—CS2 ’18, (ACM Press, Manchester, United Kingdom, 2018), pp. 13–16

    Google Scholar 

  51. A. de Matos Pedro, Dynamic contracts for verification and enforcement of real-time systems properties. Ph.D., Universidade do Minho, 2018

    Google Scholar 

  52. Cohda Wireless, Cohda Stack (2019)

    Google Scholar 

  53. R. Riebl, H. Günther, C. Facchi, L. Wolf, Artery: extending veins for VANET applications, in 2015 International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Budapest, Hungary (2015), pp. 450–456

    Google Scholar 

  54. M. Rondinone, J. Maneros, D. Krajzewicz, R. Bauza, P. Cataldi, F. Hrizi, J. Gozalvez, V. Kumar, M. Röckl, L. Lin, O. Lazaro, J. Leguay, J. Härri, S. Vaz, Y. Lopez, M. Sepulcre, M. Wetterwald, R. Blokpoel, F. Cartolano, iTETRIS: a modular simulation platform for the large scale evaluation of cooperative ITS applications. Simul. Modell. Pract. Theory 34, 99–125 (2013)

    Article  Google Scholar 

  55. B. Schünemann, V2X simulation runtime infrastructure VSimRTI: an assessment tool to design smart traffic management systems. Comput. Netw. 55, 3189–3198 (2011)

    Article  Google Scholar 

  56. M. Segata, S. Joerer, B. Bloessl, C. Sommer, F. Dressler, R.L. Cigno, Plexe: a platooning extension for Veins, in 2014 IEEE Vehicular Networking Conference (VNC), Paderborn, Germany (2014), pp. 53–60

    Google Scholar 

  57. P.A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y. Flötteröd, R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, E. WieBner, Microscopic traffic simulation using SUMO, in 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA (2018), pp. 2575–2582

    Google Scholar 

  58. I. Llatser, G. Jornod, A. Festag, D. Mansolino, I. Navarro, A. Martinoli, Simulation of cooperative automated driving by bidirectional coupling of vehicle and network simulators, in 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA (2017), pp. 1881–1886

    Google Scholar 

  59. Open Source Robotics Foundation, Gazebo: Root Simularion Made Easy (2018), http://gazebosim.org/

  60. J. Meyer, A. Sendobry, S. Kohlbrecher, U. Klingauf, O. von Stryk, Comprehensive simulation of quadrotor UAVs using ROS and Gazebo, in Simulation, Modeling, and Programming for Autonomous Robots, vol. 7628 (Springer, Berlin, Heidelberg, 2012), pp. 400–411

    Google Scholar 

  61. H. Feng, C. Wong, C. Liu, S. Xiao, ROS-based humanoid robot pose control system design, in 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan (2018), pp. 4089–4093

    Google Scholar 

  62. Z.B. Rivera, M.C. De Simone, D. Guida, Unmanned ground vehicle modelling in Gazebo/ROS-based environments. Machines 7, 42 (2019)

    Article  Google Scholar 

  63. K.A. Hambuchen, M.C. Roman, A. Sivak, A. Herblet, N. Koenig, D. Newmyer, R. Ambrose, NASA’s space robotics challenge: advancing robotics for future exploration missions, in AIAA SPACE and Astronautics Forum and Exposition (American Institute of Aeronautics and Astronautics, Orlando, FL, 2017)

    Google Scholar 

  64. NIST, Agile robotics for industrial automation competition (2020), https://www.nist.gov/el/intelligent-systems-division-73500/agile-robotics-industrial-automation-competition. Last Modified: 2020-07-09T09:19-04:00

  65. I. Chen, C. Agüero, Vehicle and city simulation with Gazebo and ROS, in ROSCon Vancouver 2017 (Open Robotics, Vancouver, Canada, 2017)

    Google Scholar 

  66. C. Sommer, Veins, the open source vehicular network simulation framework (2019)

    Google Scholar 

  67. A. Wegener, M. Piórkowski, M. Raya, H. Hellbrück, S. Fischer, J.-P. Hubaux, TraCI: an interface for coupling road traffic and network simulators, in Proceedings of the 11th communications and networking simulation symposium on—CNS ’08 (ACM Press, Ottawa, Canada, 2008), p. 155

    Google Scholar 

  68. B. Vedder, J. Vinter, M. Jonsson, A low-cost model vehicle testbed with accurate positioning for autonomous driving. J. Robot. 2018, 1–10 (2018)

    Article  Google Scholar 

  69. A. Belbachir, An embedded testbed architecture to evaluate autonomous car driving. Intell. Serv. Robot. 10 (2017)

    Google Scholar 

  70. J.P. Jansch-Porto, G.E. Dullerud, Decentralized control with moving-horizon linear switched systems: synthesis and testbed implementation, in 2017 American Control Conference (ACC), Seattle, WA, USA (2017), pp. 851–856. ISSN: 2378-5861

    Google Scholar 

  71. A. Rupp, M. Tranninger, R. Wallner, J. Zubača, M. Steinberger, M. Horn, Fast and low-cost testing of advanced driver assistance systems using small-scale vehicles. IFAC-PapersOnLine 52(5), 34–39 (2019)

    Article  Google Scholar 

  72. D. Lu, Z. Li, D. Huang, X. Lu, Y. Deng, A. Chowdhary, B. Li, VC-bots: a vehicular cloud computing testbed with mobile robots, in Proceedings of the First International Workshop on Internet of Vehicles and Vehicles of Internet—IoV-VoI ’16 (ACM Press, Paderborn, Germany, 2016), pp. 31–36

    Google Scholar 

  73. D. Lu, Z. Li, D. Huang, Platooning as a service of autonomous vehicles, in 2017 IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), Macau, China (2017), pp. 1–6

    Google Scholar 

  74. H. Cao, S. Gangakhedkar, A.R. Ali, M. Gharba, J. Eichinger, a testbed for experimenting 5G-V2X requiring ultra reliability and low-latency, in WSA 2017—21th International ITG Workshop on Smart Antennas, Berlin, Germany (2017), pp. 1–4. ISSN: null

    Google Scholar 

  75. E-Maxxdude, Ford Fiesta ST Rally: 1/10 Scale Electric Rally Racer with TQ 2.4GHz radio system (20107), https://traxxas.com/products/models/electric/ford-fiesta-st-rally. Library Catalog: traxxas.com

  76. JetsonHacks, NVIDIA Jetson TX2 J21 Header Pinout (2020), https://www.jetsonhacks.com/nvidia-jetson-tx2-j21-header-pinout/

  77. A. Industries, Teensy 3.2 + header, https://www.adafruit.com/product/2756

  78. StereoLabs, ZED Stereo Camera | Stereolabs (2020), https://www.stereolabs.com/zed/

  79. Sparkfun, SparkFun 9DoF Razor IMU M0-SEN-14001—SparkFun Electronics (2020), https://www.sparkfun.com/products/14001

  80. Robot Eletronics, SRF08 Ultra sonic range finder (2020), https://www.robot-electronics.co.uk/htm/srf08tech.html

  81. Sparkfun, Infrared Proximity Sensor Long Range—Sharp GP2Y0A02YK0F-SEN-08958-SparkFun Electronics (2020)

    Google Scholar 

  82. Cohda Wireless, Mk5 OBU (2019)

    Google Scholar 

  83. M. O’Kelly, V. Sukhil, H. Abbas, J. Harkins, C. Kao, Y. V. Pant, R. Mangharam, D. Agarwal, M. Behl, P. Burgio, M. Bertogna, F1/10: An Open-Source Autonomous Cyber-Physical Platform (2019), arXiv: 1901.08567

Download references

Acknowledgements

This work was partially supported by National Funds through FCT/MCTES (Portuguese Foundation for Science and Technology), within the CISTER Research Unit (UIDB/04234/2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enio Vasconcelos Filho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Filho, E.V., Severino, R., Rodrigues, J., Gonçalves, B., Koubaa, A., Tovar, E. (2021). CopaDrive: An Integrated ROS Cooperative Driving Test and Validation Framework. In: Koubaa, A. (eds) Robot Operating System (ROS). Studies in Computational Intelligence, vol 962. Springer, Cham. https://doi.org/10.1007/978-3-030-75472-3_4

Download citation

Publish with us

Policies and ethics