Skip to main content

Anonymous Broadcast Authentication for Securely Remote-Controlling IoT Devices

  • Conference paper
  • First Online:
Advanced Information Networking and Applications (AINA 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 226))

Abstract

In this paper, we present a basic system for controlling IoT devices in remote environments with the following requirements: (1) in a situation where an operation center broadcasts information to IoT devices, e.g., wireless environment, only the designated devices can identify operations sent from the center; (2) the devices can detect manipulation of the broadcast information and hence prevents maliciously generated operations from being executed. We formalize a model of the basic system and its essential requirements and propose anonymous broadcast authentication (ABA) as its core cryptographic primitive. We formally define the syntax and security notions for ABA and show provably-secure ABA constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Garadi, M.A., Mohamed, A., Al-Ali, A., Du, X., Ali, I., Guizani, M.: A survey of machine and deep learning methods for internet of things (IoT) security. IEEE Commun. Surv. Tuts. 22(3), 1646–1685 (2020)

    Article  Google Scholar 

  2. Andersen, M.P., et al.: WAVE: a decentralized authorization framework with transitive delegation. In: Proceedings of USENIX Security 2019, pp. 1375–1392. USENIX Association (2019)

    Google Scholar 

  3. Antonakakis, M., et al.: Understanding the mirai botnet. In: Proceedings of USENIX Security 2017, pp. 1093–1110. USENIX Association (2017)

    Google Scholar 

  4. Bellare, M.: New proofs for NMAC and HMAC: security without collision-resistance. In: Proceedings of CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer, Berlin, Heidelberg (2006)

    Google Scholar 

  5. Bellare, M., Goldreich, O., Mityagin, A.: The power of verification queries in message authentication and authenticated encryption. Cryptology ePrint Archive, Report 2004/309 (2004)

    Google Scholar 

  6. Bertino, E., Islam, N.: Botnets and internet of things security. Computer 50(2), 76–79 (2017)

    Article  Google Scholar 

  7. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Proceedings of CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Berlin, Heidelberg (2005)

    Google Scholar 

  8. Chan, H., Perrig, A.: Round-efficient broadcast authentication protocols for fixed topology classes. In: Proceedings of IEEE S&P 2010, pp. 257–272. IEEE (2010)

    Google Scholar 

  9. Costin, A., Zaddach, J., Francillon, A., Balzarotti, D.: A large-scale analysis of the security of embedded firmwares. In: Proceedings of USENIX Security 2014, pp. 95–110. USENIX Association (2014)

    Google Scholar 

  10. Costin, A., Zarras, A., Francillon, A.: Automated dynamic firmware analysis at scale: a case study on embedded web interfaces. In: Proceedings of ASIACCS 2016, pp. 437–448. ACM (2016)

    Google Scholar 

  11. Fazio, N., Perera, I.M.: Outsider-anonymous broadcast encryption with sublinear ciphertexts. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) Public Key Cryptography - PKC 2012, pp. 225–242. Springer, Berlin Heidelberg (2012)

    Chapter  Google Scholar 

  12. Fernandes, E., Jung, J., Prakash, A.: Security analysis of emerging smart home applications. In: Proceedings of IEEE S&P 2016, pp. 636–654. IEEE (2016)

    Google Scholar 

  13. Fernandes, E., Paupore, J., Rahmati, A., Simionato, D., Conti, M., Prakash, A.: FlowFence: practical data protection for emerging iot application frameworks. In: Proceedings of USENIX Security 2016, pp. 531–548. USENIX Association (2016)

    Google Scholar 

  14. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)

    Article  MathSciNet  Google Scholar 

  15. HÅstad, J., Impagliazzo, R., Levin, L., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

    Google Scholar 

  16. Kiayias, A., Samari, K.: Lower bounds for private broadcast encryption. In: Proceedings of IH 2013. LNCS, vol. 7692, pp. 176–190. Springer, Berlin, Heidelberg (2013)

    Google Scholar 

  17. Kumar, S., Hu, Y., Andersen, M.P., Popa, R.A., Culler, D.E.: JEDI: many-to-many end-to-end encryption and key delegation for IoT. In: Proceedings of USENIX Security 2019, pp. 1519–1536. USENIX Association (2019)

    Google Scholar 

  18. Li, J., Gong, J.: Improved anonymous broadcast encryptions. In: Proceedings of ACNS 2018. LNCS, vol. 10892, pp. 497–515. Springer (2018)

    Google Scholar 

  19. Libert, B., Paterson, K.G., Quaglia, E.A.: Anonymous broadcast encryption: adaptive security and efficient constructions in the standard model. In: Proceedings of PKC 2012. LNCS, vol. 7293, pp. 206–224. Springer, Berlin, Heidelberg (2012)

    Google Scholar 

  20. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. In: Proceedings of CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Berlin, Heidelberg (2001)

    Google Scholar 

  21. Neto, A.L.M., et al.: AoT: authentication and access control for the entire iot device life-cycle. In: Proceedings of Sensys 2016, pp. 1–15. ACM (2016)

    Google Scholar 

  22. Perrig, A.: The biba one-time signature and broadcast authentication protocol. In: Proceedings of CCS 2001, pp. 28–37. ACM (2001)

    Google Scholar 

  23. Perrig, A., Canetti, R., Tygar, J.D., Song, D.: Efficient authentication and signing of multicast streams over lossy channels. In: Proceedings of IEEE S&P 2000, pp. 56–73. IEEE (2000)

    Google Scholar 

  24. Ronen, E., Shamir, A., Weingarten, A.O., Olynn, C.: IoT goes nuclear: creating a ZigBee chain reaction. In: Proceedings of IEEE S&P 2017, pp. 195–212. IEEE (2017)

    Google Scholar 

  25. Safavi-Naini, R., Wang, H.: Broadcast authentication for group communication. Theor. Comput. Sci. 269(1), 1–21 (2001)

    Article  MathSciNet  Google Scholar 

  26. Shim, K.A.: Basis: a practical multi-user broadcast authentication scheme in wireless sensor networks. IEEE Trans. Inf. Forensics Secur. 12(7), 1545–1554 (2017)

    Article  Google Scholar 

  27. Wang, X., Han, Y., Leung, V.C., Niyato, D., Yan, X., Chen, X.: Convergence of edge computing and deep learning: a comprehensive survey. IEEE Commun. Surv. Tuts. 22(2), 869–904 (2020)

    Article  Google Scholar 

  28. Zhauniarovich, Y., Khalil, I., Yu, T., Dacier, M.: A survey on malicious domains detection through DNS data analysis. ACM Comput. Surv. 51(4) (2018)

    Google Scholar 

Download references

Acknowledgements

This research was conducted under a contract of “Research and development on IoT malware removal / make it non-functional technologies for effective use of the radio spectrum” among “Research and Development for Expansion of Radio Wave Resources (JPJ000254)”, which was supported by the Ministry of Internal Affairs and Communications, Japan. We would like to thank Hirokazu Kobayashi for his useful comments on existing broadcast authentication protocols and Tatsuya Takehisa for his valuable comments on the system model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohei Watanabe .

Editor information

Editors and Affiliations

Appendix

Appendix

We provide lists for the notations regarding ABA and building blocks in Tables 1 and 2, respectively.

Table 1. Notation list for ABA.
Table 2. Notation list for MAC and PRF.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Watanabe, Y., Yanai, N., Shikata, J. (2021). Anonymous Broadcast Authentication for Securely Remote-Controlling IoT Devices. In: Barolli, L., Woungang, I., Enokido, T. (eds) Advanced Information Networking and Applications. AINA 2021. Lecture Notes in Networks and Systems, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-030-75075-6_56

Download citation

Publish with us

Policies and ethics