Skip to main content

Plant Leaf Disease Segmentation Using Compressed UNet Architecture

  • Conference paper
  • First Online:
Trends and Applications in Knowledge Discovery and Data Mining (PAKDD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12705))

Included in the following conference series:

Abstract

In proposed work, a compressed version of UNet has been developed using Differential Evolution for segmenting the diseased regions in leaf images. The compressed model has been evaluated on potato late blight leaf images from PlantVillage dataset. The compressed model needs only 6.8% of space needed by original UNet architecture, and the inference time for disease classification is twice as fast without loss in performance metric of mean Intersection over Union (IoU).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anwar, S., Hwang, K., Sung, W.: Structured pruning of deep convolutional neural networks. ACM J. Emerg. Technol. Comput. Syst. (JETC) 13(3), 1–18 (2017)

    Article  Google Scholar 

  2. Beheshti, N., Johnsson, L.: Squeeze u-net: a memory and energy efficient image segmentation network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 364–365 (2020)

    Google Scholar 

  3. Chakraborty, U.K.: Advances in Differential Evolution, vol. 143. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68830-3

    Book  MATH  Google Scholar 

  4. Feoktistov, V.: Differential Evolution. Springer, Heidelberg (2006). https://doi.org/10.1007/978-0-387-36896-2

    Book  MATH  Google Scholar 

  5. Ganesh, P., Volle, K., Burks, T., Mehta, S.: Deep orange: mask R-CNN based orange detection and segmentation. IFAC-PapersOnLine 52(30), 70–75 (2019)

    Article  MathSciNet  Google Scholar 

  6. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: Advances in Neural Information Processing Systems, pp. 1135–1143 (2015)

    Google Scholar 

  7. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1389–1397 (2017)

    Google Scholar 

  8. Hughes, D., Salathé, M., et al.: An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv preprint arXiv:1511.08060 (2015)

  9. Islam, M., Dinh, A., Wahid, K., Bhowmik, P.: Detection of potato diseases using image segmentation and multiclass support vector machine. In: 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–4. IEEE (2017)

    Google Scholar 

  10. Johannes, A., et al.: Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case. Comput. Electron. Agric. 138, 200–209 (2017)

    Article  Google Scholar 

  11. Lee, U., Chang, S., Putra, G.A., Kim, H., Kim, D.H.: An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis. PLoS ONE 13(4), e0196615 (2018)

    Article  Google Scholar 

  12. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710 (2016)

  13. Lin, K., Gong, L., Huang, Y., Liu, C., Pan, J.: Deep learning-based segmentation and quantification of cucumber powdery mildew using convolutional neural network. Front. Plant Sci. 10, 155 (2019)

    Article  Google Scholar 

  14. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolutional networks through network slimming. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2736–2744 (2017)

    Google Scholar 

  15. Ma, J., Du, K., Zheng, F., Zhang, L., Gong, Z., Sun, Z.: A recognition method for cucumber diseases using leaf symptom images based on deep convolutional neural network. Comput. Electron. Agric. 154, 18–24 (2018)

    Article  Google Scholar 

  16. Mohanty, S.P., Hughes, D.P., Salathé, M.: Using deep learning for image-based plant disease detection. Front. Plant Sci. 7, 1419 (2016)

    Article  Google Scholar 

  17. Ronneberger, Olaf, Fischer, Philipp, Brox, Thomas: U-Net: convolutional networks for biomedical image segmentation. In: Navab, Nassir, Hornegger, Joachim, Wells, William M., Frangi, Alejandro F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Samala, R.K., Chan, H.P., Hadjiiski, L.M., Helvie, M.A., Richter, C., Cha, K.: Evolutionary pruning of transfer learned deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis. Phys. Med. Biol. 63(9), 095005 (2018)

    Article  Google Scholar 

  19. Wang, Z., Li, F., Shi, G., Xie, X., Wang, F.: Network pruning using sparse learning and genetic algorithm. Neurocomputing 404, 247–256 (2020)

    Article  Google Scholar 

  20. Yang, Chuanguang, An, Zhulin, Li, Chao, Diao, Boyu, Xu, Yongjun: Multi-objective pruning for CNNs using genetic algorithm. In: Tetko, Igor V., Kůrková, Věra, Karpov, Pavel, Theis, Fabian (eds.) ICANN 2019. LNCS, vol. 11728, pp. 299–305. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30484-3_25

    Chapter  Google Scholar 

  21. Zhang, Q., Zhang, M., Chen, T., Sun, Z., Ma, Y., Yu, B.: Recent advances in convolutional neural network acceleration. Neurocomputing 323, 37–51 (2019)

    Article  Google Scholar 

  22. Zhou, J., Fu, X., Zhou, S., Zhou, J., Ye, H., Nguyen, H.T.: Automated segmentation of soybean plants from 3D point cloud using machine learning. Comput. Electron. Agric. 162, 143–153 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohit Agarwal .

Editor information

Editors and Affiliations

A Appendix I

A Appendix I

1.1 A.1 UNet architecture

Fig. 4.
figure 4

Architecture of UNet [17].

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agarwal, M., Gupta, S.K., Biswas, K.K. (2021). Plant Leaf Disease Segmentation Using Compressed UNet Architecture. In: Gupta, M., Ramakrishnan, G. (eds) Trends and Applications in Knowledge Discovery and Data Mining. PAKDD 2021. Lecture Notes in Computer Science(), vol 12705. Springer, Cham. https://doi.org/10.1007/978-3-030-75015-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75015-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75014-5

  • Online ISBN: 978-3-030-75015-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics