Skip to main content

Channel Estimation in RIS-Aided Networks

  • Chapter
  • First Online:
Enabling 6G Mobile Networks

Abstract

Reconfigurable intelligent surface (RIS) is a recently emerging transmission technology for application to wireless communications. Regarded to be an emerging solution for the next generation of communications, RIS is a nearly passive device that realizes smart radio environment with low hardware cost and energy consumption. This merit of RIS, on the other hand, imposes a major challenge to the channel estimation of RIS-aided communication systems. Recently, many protocols and algorithms are proposed to handle this challenging problem. In this chapter, we review the problem of channel estimation in RIS-aided systems and survey recent developments on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ITU-R (2015) IMT traffic estimates for the years 2020 to 2030. http://www.itu.int/pub/R-REP-M.2370

  2. Danufane, F. H., Di Renzo, M., De Rosny, J., & Tretyakov, S. (2020). On the path-loss of reconfigurable intelligent surfaces: An approach based on green’s theorem applied to vector fields. https://arxiv.org/abs/2007.13158

  3. Arun, V., & Balakrishnan, H. (2020). RFocus: Beamforming using thousands of passive antennas. In 17th USENIX symposium on networked systems design and implementation (NSDI 20), pp. 104 7–1061.

    Google Scholar 

  4. NTT DOCOMO. (2000). DOCOMO conducts world’s first successful trial of transparent dynamic metasurface. https://www.nttdocomo.co.jp/english/info/media_center/pr/2020/0117_00.html. Accessed 26 Aug 2000.

  5. Yu, N., Genevet, P., Kats, M. A., et al. (2011). Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science, 334(6054), 333–337. https://doi.org/10.1126/science.1210713

    Article  Google Scholar 

  6. Di Renzo, M., Ntontin, K., Song, J., Danufane, F. H., Qian, X., et al. (2020). Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison. IEEE Open Journal of the Communications Society, 1, 798–807. https://doi.org/10.1109/OJCOMS.2020.3002955

    Article  Google Scholar 

  7. Nadeem, Q. U. A., Kammoun, A., Chaaban, A., et al. (2019). Intelligent reflecting surface assisted wireless communication: Modeling and channel estimation. https://arxiv.org/abs/1906.02360

  8. Lin, J., Wang, G., & Fan, R., et al. (2019). Channel estimation for wireless communication systems assisted by large intelligent surfaces. https://arxiv.org/abs/1911.02158

  9. Mishra, D., & Johansson, H. (2019). Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 4659–4663. https://doi.org/10.1109/ICASSP.2019.8683663

  10. Yang, Y., Zheng, B., Zhang, S., et al. (2020). Intelligent reflecting surface meets OFDM: Protocol design and rate maximization. IEEE Transactions on Communications, 68(7), 4522–4535. https://doi.org/10.1109/TCOMM.2020.2981458

    Article  Google Scholar 

  11. Zheng, B., & Zhang, R. (2019). Intelligent reflecting surface-enhanced OFDM: Channel estimation and reflection optimization. IEEE Wireless Communications Letters, 9(4), 518–522. https://doi.org/10.1109/LWC.2019.2961357

    Article  MathSciNet  Google Scholar 

  12. You, C., Zheng, B., & Zhang, R. (2019). Intelligent reflecting surface with discrete phase shifts: Channel estimation and passive beamforming. In IEEE International Conference on Communications (ICC), Dublin, Ireland, pp. 1–6. https://doi.org/10.1109/ICC40277.2020.9149292

  13. Jensen, T. L., & De Carvalho, E. (2020). An optimal channel estimation scheme for intelligent reflecting surfaces based on a minimum variance unbiased estimator. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5000–5004. https://doi.org/10.1109/ICASSP40776.2020.9053695

  14. Wang, Z., Liu, L., & Cui, S. (2020). Channel estimation for intelligent reflecting surface assisted multiuser communications: Framework, algorithms, and analysis. IEEE Transactions on Wireless Communications. https://doi.org/10.1109/TWC.2020.3004330

  15. Wei, L., Huang, C., Alexandropoulos, G. C., et al. (2020). Parallel factor decomposition channel estimation in RIS-assisted multi-user MISO communication. In IEEE 11th sensor array and multichannel signal processing workshop (SAM), pp. 1–5. https://doi.org/10.1109/SAM48682.2020.9104305

  16. Chen, J., Liang, Y. C., Cheng, H. V., et al. (2019). Channel estimation for reconfigurable intelligent surface aided multi-user MIMO systems. https://arxiv.org/abs/1912.03619

  17. Ning, B., Chen, Z., Chen, W., et al. (2019). Channel estimation and transmission for intelligent reflecting surface assisted THz communications. In IEEE international conference on communications (ICC), pp. 1–7. https://doi.org/10.1109/ICC40277.2020.9149153

  18. Cui, Y., & Yin, H. (2019). An efficient CSI acquisition method for intelligent reflecting surface-assisted mmwave networks. https://arxiv.org/abs/1912.12076

  19. Xia, S., & Shi, Y. (2020). Intelligent reflecting surface for massive device connectivity: Joint activity detection and channel estimation. In IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 5175–5179. https://doi.org/10.1109/ICASSP40776.2020.9054415

  20. Liu, H., Yuan, X., & Jun, Y. (2020). Matrix-calibration-based cascaded channel estimation for reconfigurable intelligent surface assisted multiuser MIMO. IEEE Journal on Selected Areas in Communications. https://doi.org/10.1109/JSAC.2020.3007057

  21. Wan Z, Gao Z, Alouini M S (2020) Broadband channel estimation for intelligent reflecting surface aided mmWave massive MIMO systems. https://arxiv.org/abs/2002.01629

  22. Wang, P., Fang, J., Duan, H., et al. (2020). Compressed channel estimation and joint beamforming for intelligent reflecting surface-assisted millimeter wave systems. IEEE Signal Processing Letters, 27, 905–909. https://doi.org/10.1109/LSP.2020.2998357

    Article  Google Scholar 

  23. He, J., Leinonen, M., & Wymeersch, H., et al. (2020). Channel estimation for RIS-aided mmWave MIMO channels. https://arxiv.org/abs/2002.06453

  24. Khan, S., & Shin, S. Y. (2019). Deep-learning-aided detection for reconfigurable intelligent surfaces. https://arxiv.org/abs/1910.09136

  25. Elbir, A. M., Papazafeiropoulos, A., Kourtessis, P., et al. (2020). Deep channel learning for large intelligent surfaces aided mm-wave massive MIMO systems. IEEE Wireless Communications Letters. https://doi.org/10.1109/LWC.2020.2993699

  26. Taha, A., Alrabeiah, M., & Alkhateeb, A. (2019). Enabling large intelligent surfaces with compressive sensing and deep learning. https://arxiv.org/abs/1904.10136

  27. Taha, A., Zhang, Y., Mismar, F. B., et al. (2020). Deep reinforcement learning for intelligent reflecting surfaces: Towards standalone operation. In 2020 IEEE 21st international workshop on signal processing advances in wireless communications (SPAWC), Atlanta, GA, USA, pp. 1–5. https://doi.org/10.1109/SPAWC48557.2020.9154301

  28. Jiang, F., Yang, L., da Costa, D. B., et al. (2020). Channel estimation via direct calculation and deep learning for RIS-aided mmWave systems. https://arxiv.org/abs/2008.04704

  29. Liu, S., Gao, Z., Zhang, J., et al. (2020). Deep denoising neural network assisted compressive channel estimation for mmWave intelligent reflecting surfaces. IEEE Transactions on Vehicular Technology, 69(8), 9223–9228. https://doi.org/10.1109/TVT.2020.3005402

    Article  Google Scholar 

  30. Danufane, F. H., Di Renzo, M., de Rosny, J., et al. (2020). On the path-loss of reconfigurable intelligent surfaces: An approach based on green’s theorem applied to vector fields. https://arxiv.org/abs/2007.13158

Download references

Acknowledgments

The work of F. Danufane and J. Liu was supported in part by the European Commission through the H2020 5GstepFWD project under grant agreement number 722429.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Danufane, F., Mursia, P., Liu, J. (2022). Channel Estimation in RIS-Aided Networks. In: Rodriguez, J., Verikoukis, C., Vardakas, J.S., Passas, N. (eds) Enabling 6G Mobile Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-74648-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74648-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74647-6

  • Online ISBN: 978-3-030-74648-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics