Skip to main content

Feature Extraction Functions for Neural Logic Rule Learning

  • Conference paper
  • First Online:
Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2021)

Abstract

Combining symbolic human knowledge with neural networks provides a rule-based ante-hoc explanation of the output. In this paper, we propose feature extracting functions for integrating human knowledge abstracted as logic rules into the predictive behaviour of a neural network. These functions are embodied as programming functions, which represent the applicable domain knowledge as a set of logical instructions and provide a modified distribution of independent features on input data. Unlike other existing neural logic approaches, the programmatic nature of these functions implies that they do not require any kind of special mathematical encoding, which makes our method very general and flexible in nature. We illustrate the performance of our approach for sentiment classification and compare our results to those obtained using two baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As we present our method as an alternative to the iterative-knowledge distillation [7], a direct comparison was necessary in terms of results and thus, we adopted the same methodology to produce results as in [7]. The authors in [7] also employ 10-fold cross validation for the MR and CR data sets.

References

  1. Bach, S.H., Broecheler, M., Huang, B., Getoor, L.: Hinge-loss Markov random fields and probabilistic soft logic. CoRR abs/1505.04406 (2015)

    Google Scholar 

  2. Bach, S.H., et al.: Snorkel drybell: a case study in deploying weak supervision at industrial scale. In: Proceedings of the 2019 International Conference on Management of Data, pp. 362–375 (2019)

    Google Scholar 

  3. Gabbay, A., Garcez, A., Broda, K., Gabbay, D.M., Gabbay, P.: Neural-Symbolic Learning Systems: Foundations and Applications. Springer, London (2002). https://doi.org/10.1007/978-1-4471-0211-3

    Book  MATH  Google Scholar 

  4. Ganchev, K., Graça, J., Gillenwater, J., Taskar, B.: Posterior regularization for structured latent variable models. J. Mach. Learn. Res. 11, 2001–2049 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NIPS Deep Learning and Representation Learning Workshop (2015)

    Google Scholar 

  6. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 168–177 (2004)

    Google Scholar 

  7. Hu, Z., Ma, X., Liu, Z., Hovy, E., Xing, E.: Harnessing deep neural networks with logic rules. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, pp. 2410–2420. Association for Computational Linguistics (2016)

    Google Scholar 

  8. Kim, Y.: Convolutional neural networks for sentence classification. CoRR abs/1408.5882 (2014)

    Google Scholar 

  9. Krishna, K., Jyothi, P., Iyyer, M.: Revisiting the importance of encoding logic rules in sentiment classification. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 4743–4751 (2018)

    Google Scholar 

  10. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. CoRR abs/1405.4053 (2014)

    Google Scholar 

  11. Lewis, D.D.: Feature selection and feature extraction for text categorization. In: Proceedings of the Workshop on Speech and Natural Language, pp. 212–217 (1992)

    Google Scholar 

  12. Liang, X., Hu, Z., Zhang, H., Lin, L., Xing, E.P.: Symbolic graph reasoning meets convolutions. In: Advances in Neural Information Processing Systems, pp. 1853–1863 (2018)

    Google Scholar 

  13. Nguyen, A.M., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. CoRR abs/1412.1897 (2014)

    Google Scholar 

  14. Pang, B., Lee, L.: Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales. In: Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL 2005) (2005)

    Google Scholar 

  15. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  16. Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettlemoyer, L.: Deep contextualized word representations. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 2227–2237 (2018)

    Google Scholar 

  17. Rai, A.: Explainable AI: from black box to glass box. J. Acad. Mark. Sci. 8(1), 137–141 (2020). https://doi.org/10.1007/s11747-019-00710-5

    Article  Google Scholar 

  18. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: Explaining the predictions of any classifier. CoRR abs/1602.04938 (2016)

    Google Scholar 

  19. Szegedy, C., et al.: Intriguing properties of neural networks. In: International Conference on Learning Representations (2014)

    Google Scholar 

  20. Taskar, B., Guestrin, C., Koller, D.: Max-margin markov networks. In: NIPS, pp. 25–32 (2003)

    Google Scholar 

  21. Tran, S.N.: Unsupervised neural-symbolic integration. CoRR abs/1706.01991 (2017)

    Google Scholar 

  22. Vilone, G., Longo, L.: Explainable artificial intelligence: a systematic review. arXiv preprint arXiv:2006.00093 (2020)

  23. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. CoRR abs/1212.5701 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashank Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, S., Robles-Kelly, A., Bouadjenek, M.R. (2021). Feature Extraction Functions for Neural Logic Rule Learning. In: Torsello, A., Rossi, L., Pelillo, M., Biggio, B., Robles-Kelly, A. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2021. Lecture Notes in Computer Science(), vol 12644. Springer, Cham. https://doi.org/10.1007/978-3-030-73973-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73973-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73972-0

  • Online ISBN: 978-3-030-73973-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics