Skip to main content

Heavy Metals in the Marine Environment—An Overview

  • Chapter
  • First Online:
Heavy Metals in Scleractinian Corals

Part of the book series: SpringerBriefs in Earth Sciences ((BRIEFSEARTH))

Abstract

Heavy metals are the natural constituents of the Earth’s crust, found in very low concentrations; however, human activities such as industrial waste discharges, agricultural practices, coastal construction and dredging have inevitably increased the metal concentrations in the marine environment. Heavy metals are classified as both essential and non-essential elements. Essential heavy metals have known biological roles and are only toxic above threshold concentrations whilst non-essential heavy metals lack any known biological role in marine invertebrates and exhibit high degree of toxicity if allowed to accumulate at metabolically active sites. Heavy metals are non-biodegradable, persistent and toxic to the environment, thus causing serious eco-toxicological problems. Heavy metals tend to bioaccumulate and the extent of their bioaccumulation is dependent on the total amount, the bioavailability of each metal in the environmental medium and the route of uptake, storage and excretion mechanisms. Metal speciation influences metal bioavailability and toxicity to biota, its transportation and mobilization, and its interaction with the environment. The actual metal speciation is influenced by factors such as pH, the types and concentrations of inorganic ligands and organic ligands and colloidal species present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2000) Toxicological profile for Arsenic TP-92/09. Georgia: Center for Disease Control, Atlanta. https://www.atsdr.cdc.gov/toxprofiles/tp2.pdf

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2005) Toxicological profile for tin and compounds. https://www.atsdr.cdc.gov/toxprofiles/tp55.pdf

  • Agency for Toxic Substances and Disease Registry (ATSDR). (2007) Toxicological profile for Arsenic. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. https://www.atsdr.cdc.gov/toxprofiles/tp2.pdf

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2011) Toxicology profile for arsenic. TP-92/09. Center for Disease Control, Agency for Toxic Substances and Disease Registry; Atlanta, GA

    Google Scholar 

  • Agency for toxic substances and disease registry (ATSDR) (2017) Lead toxicity. https://www.atsdr.cdc.gov

  • Akan JC, Abdurrahman FI, Sodipo OA, Ochanya AE, Askira YK (2010) Heavy metals in sediments from River Ngada, Maiduguri Metropolis, Borno State, Nigeria. J Environ Chem Ecotoxicol 2:131–140

    CAS  Google Scholar 

  • Alexander DE (1999) Bioaccumulation, bioconcentration, biomagnification. Environ Geol Encycl Earth Sci: 43–44. https://doi.org/10.1007/1-4020-4494-1_31

    Google Scholar 

  • Al-Rousan S (2012) Skeletal extension rate of the reef building coral Porites species from Aqaba and their environmental variables. Nat Sci 4(9):731–739

    Google Scholar 

  • Al-Rousan SA, Al-Shoul RN, Al-Horani FA, Abu-Hilal AH (2007) Heavy metal contents in growth bands of Porites corals. Record of anthropogenic and human developments from the Jordanian Gulf of Aqaba. Mar Pollut Bull 54:1912–1922

    Article  CAS  Google Scholar 

  • ANZECC & ARMCANZ (Australia and New Zealand Environment and Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand (2016) Default guideline values for toxicants: manganese-marine water (DRAFT). Revision to the Australian and New Zealand guidelines for fresh and marine water quality. Australian Department of Agriculture and Water Resources, Canberra. Unpublished, p 17

    Google Scholar 

  • Ansari TM, Marr IL, Tariq N (2004) Heavy metals in marine pollution perspective—a mini review. J Appl Sci 4(1):1–20

    Article  Google Scholar 

  • Ashraf W (2005) Accumulation of heavy metals in kidney and heart tissues of Epinephelus Micrdon fish from the Arabian Gulf. Environ Monit Assess 101(1–3):311–316

    Article  CAS  Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(94). https://doi.org/10.3390/ijerph14010094

  • Baby J, Raj JS, Biby ET, Sankarganesh P, Jeevitha MV, Ajisha SU Rajan SS (2010) Toxic effect of heavy metals on aquatic environment. Int J Biolog Chem Sci 4(4):939–952

    Google Scholar 

  • Bank MS (2012) Mercury in the environment: pattern and process, 1st edn. University Of California Press, pp 340

    Google Scholar 

  • Bastami KD, Neyestani MR, Shemirani F, Soltani F, Haghparast S, Akbari A (2015) Heavy metal pollution assessment in relation to sediment properties in the coastal sediments of the Southern Caspian Sea. Mar Pollut Bull 93:237–243

    Article  CAS  Google Scholar 

  • Bastidas C, Bone D, Garci’a EM (1999) Sedimentation rates and metal content of sediments in a Venezuelan coral reef. Mar Pollut Bull 38:16–24

    Article  CAS  Google Scholar 

  • Bat L, Sezgin M, Ustun F, Sahin F (2012) Heavy metal concentrations in ten species of fishes caught in Sinop coastal waters of the Black Sea, Turkey. Turkish J Fish Aquatic Sci 12(5):371–376. https://doi.org/10.4194/1303-2712-v12_2_24

    Article  Google Scholar 

  • Bielicka A, Bojanowska I, Wisniewski A (2005) Two faces of chromium-pollutant and bioelement: review. Polish J Environ Stud 14(1):5–10

    CAS  Google Scholar 

  • Bielmyer GK, Grosell M (2011) Emerging issues in marine metal toxicity. In: Bury N, Handy R (eds) Essential reviews in experimental biology, vol 2. Kings College. London, UK, pp 129–158

    Google Scholar 

  • Bielmyer GK, Brix KV, Capo TR, Grosell M (2005) The effects of metals on embryo larval and adult life stages of the sea urchin, Diadema antillarum. Aquat Toxicol 74:254–263

    Article  CAS  Google Scholar 

  • Bielmyer GK, Gillette P, Grosell M, Bhagooli R, Baker AC, Langdon C, Capo T (2010) Effects of copper exposure on three species of scleractinian corals. Aquat Toxicol 97:125–133

    Article  CAS  Google Scholar 

  • Bielmyer GK, Jarvis T, Harper BT, Butler B, Rice L, Ryan S (2012) Metal accumulation from dietary exposure in the sea urchin, Strongylocentrotus droebachiensis. Arch Environ Contam Toxicol 63:86–94

    Article  CAS  Google Scholar 

  • Bielmyer-Fraser GK, Patel P, Capo T, Grosell M (2018) Physiological responses of corals to ocean acidification and copper exposure. Mar Pollut Bull 133:781–790

    Article  CAS  Google Scholar 

  • Bishop JKB, Davis RE, Sherman JT (2002) Robotic observations of dust storm enhancement of carbon biomass in the North Pacific. Science 298:817–821

    Article  CAS  Google Scholar 

  • Boyd P, Jickells TD, Law CS, Blain S, Boyle EA, Buesseler KO, Coale KH, Cullen JJ, de Baar HJW, Follows M, Harvey M, Lancelot C, Levasseu M, Owens NPJ, Pollard R, Rivkin RB, Sarmiento J, Schoemann V, Smetacek V, Takeda S, Tsuda A, Turner S, Watson AJ (2007) Mesoscale iron enrichment experiments 1993-2005: synthesis and future directions. Science 315:612–617

    Article  CAS  Google Scholar 

  • Brosset C (1981) The mercury cycle. Water Air Soil Pollution 16(2):253–255. https://doi.org/10.1007/bf01046859

  • Brown MT, Depledge MH (1985) Determinants of trace metal concentrations in marine organisms. In: Langston WJ, Bebianno MJ (eds) Metal metabolism in aquatic environment

    Google Scholar 

  • Brown CJ, Eaton RA (2001) Toxicity of chromated arsenate (CCA) treated wood to non-target marine fouling communities in Langstone Harbour, Portsmouth, UK. Mar Pollut Bull 42(4):310–318

    Article  CAS  Google Scholar 

  • Burdige DJ (1993) The biogeochemistry of manganese and iron reduction in marine sediments. Earth-Sci Rev 35:249–284. https://doi.org/10.1016/0012-8252(93)90040-E

    Article  CAS  Google Scholar 

  • Byrd JT, Andreae MO (1982) Tin and methyltin species in seawater: concentrations and fluxes. Science 218(5):565–569

    Article  CAS  Google Scholar 

  • Cassar N, Bender ML, Barnett BA, Fan S, Moxim WJ, Levy H, Tilbrook B (2007) The southern ocean biological response to aeolian iron deposition. Science 317:1067–1070

    Article  CAS  Google Scholar 

  • Cempel M, Nikel G (2006) Nickel: A Review of its Sources and Environmental Toxicology. Polish J Environ Stud 15(3):375–382

    CAS  Google Scholar 

  • Chen CW, Chen CF, Dong CD (2012) Distribution and accumulation of mercury in sediments of Kaohsiung River Mouth, Taiwan. APCBEE Procedia 1:153–158

    Article  CAS  Google Scholar 

  • Chen X, Wei G, Deng W, Liu Y, Sun Y, Zeng T, Xie L (2015) Decadal variations in trace metal concentrations on a coral reef: evidence from a 159-year record of Mn, Cu, and V in a Porites coral from the northern South China Sea. J Geophys Res Oceans 120:405–416. https://doi.org/10.1002/2014JC010390

    Article  CAS  Google Scholar 

  • Chiarelli R, Roccheri MC (2014) Marine invertebrates as bioindicators of heavy metal pollution. Open J Metal 4:93–106. https://doi.org/10.4236/ojmetal.2014.44011

    Article  Google Scholar 

  • Clark RB (2001) Marine pollution. Oxford University Press

    Google Scholar 

  • Claisse D, Alzieu C (1993) Copper contamination as a result of antifouling regulation. Mar Pollut Bull 26:395–397

    Article  CAS  Google Scholar 

  • Costa MF, Landing WM, Kehrig HA, Barletta M, Holmes CD, Barrocas PRG, Evers DC, Vasconcellos AC, Hacon SS, Moreira JC, Malm O (2012) Mercury in tropical and subtropical coastal environments. Environ Res 119:88–100

    Article  CAS  Google Scholar 

  • Cremlyn R (1979) Pesticides preparation and mode of action. Wiley, London

    Google Scholar 

  • Crespo S, Karnaky KJ Jr (1983) Copper and zinc inhibit chloride transport across the opercular epithelium of seawater-adapted killifish Fundulus heteroclitus. J Exp Biol 102:337–341

    Article  CAS  Google Scholar 

  • Dafforn KA, Lewis JA, Johnston EL (2011) Antifouling strategies: history and regulation, ecological impacts and mitigation. Mar Pollut Bull 62:453–465

    Article  CAS  Google Scholar 

  • Das S, Patnaik SC, Sahu HK, Chakraborty A, Sudarshan M, Thatoi HN (2013) Heavy metal contamination, physio-chemical and microbial evaluation of water samples collected from chromite mine environment of Sukinda, India. Trans Nonferr Metals Soc China 23:484–493

    Article  CAS  Google Scholar 

  • DeForest D, Brix K, Adams W (2007) Assessing metal bioaccumulation in aquatic environments: The inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquat Toxicol 83:236–246

    Article  CAS  Google Scholar 

  • Depledge MH, Rainbow PS (1990) Models of regulation and accumulation of trace metals in marine invertebrates. Comp Biochem Physiol Pat C Comp Pharmacol 97(1):1–7

    Article  Google Scholar 

  • de Mora SJ (1999) The oceanic environment. In: RM Harrison (ed) Understanding our environment: an introduction to environmental chemistry and pollution, p 195

    Google Scholar 

  • De Pooter D (2013) Heavy metals. http://www.coastalwiki.org/wiki/Heavy_metals

  • Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways and effects. Environ Sci Technol 47:4967–4983. https://doi.org/10.1021/es305071v

    Article  CAS  Google Scholar 

  • Duan L, Song J, Li X, Yuan H, Xu S (2012) Dissolved inorganic tin sources and its coupling with eco-environments in Bohai Bay. Environ Monit Assess 184:1335–1349. https://doi.org/10.1007/s10661-011-2044-4

    Article  CAS  Google Scholar 

  • Ducros V (1992) Chromium metabolism, a literature review. Biol Trace Elem Res 32:65–77

    Article  CAS  Google Scholar 

  • Eisler R (1997) Silver hazards to fish, wildlife and invertebrates: a synoptic review. Washington, DC, US Department of the Interior, National Biological Service, 44 pp. (Biological Report 32 and Contaminant Hazard Reviews Report 32)

    Google Scholar 

  • Elder JF (1988) Metal biogeochemistry in surface-water systems; a review of principles and concepts. US Geological Survey Circular, pp 1013

    Google Scholar 

  • El-Sorogy AS, Youssef M, Al-Kahtany K, Al-Otaiby N (2016) Assessment of arsenic in coastal sediments, seawaters and molluscs in the Tarut Island, Arabian Gulf, Saudi Arabia. J Afr Earth Sc 113:65–72

    Article  CAS  Google Scholar 

  • Emerson D (2019) Biogenic Iron Dust: a novel approach to ocean iron fertilization as a means of large scale removal of carbon dioxide from the atmosphere. Front Mar Sci 2:22. https://doi.org/10.3389/fmars.2019.00022

    Article  Google Scholar 

  • Environmental Protection Agency (2017) https://www.epa.gov/clean-air-act-overview/clean-air-act-text

  • Esslemont G (1998) Heavy metals in the tissues and skeleton of scleractinian corals. PhD thesis. Southern Cross University, Australia, p 257

    Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37(2):517–531. https://doi.org/10.1016/j.envint.2010.10.012

    Article  CAS  Google Scholar 

  • Falkowski PG (1997) Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387:272–275

    Article  CAS  Google Scholar 

  • Farombi EO, Adelowo OA, Ajimoko YR (2007) Biomakers of oxidative stress and heavy metal levels as indicators of environmental pollution in African cat fish (Clarias gariepinus) from Nigeria Ogun River. Int J Environ Res Public Health 4(2):158–165

    Article  CAS  Google Scholar 

  • Fischel JS, Fischel MH, Sparks DL (2015) Advances in understanding reactivity of manganese oxides with arsenic and chromium in environmental systems. In: ACS symposium series. Oxford University Press, Washington DC, pp 1–27. https://doi.org/10.1021/bk-2015-1197.ch001

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418

    Article  CAS  Google Scholar 

  • Furness RW, Rainbow PS (1990) Heavy metals in the marine environment. CRC Press, Boca Raton, FL

    Google Scholar 

  • Garcia-Alix A, Jimenez-Espejo FJ, Lozano JA, Jiménez-Moreno G, Martinez-Ruiz F, Garcia Sanjuán L, Aranda Jiménez G, García Alfonso E, Ruiz-Puertas G, Scott Anderson R (2013) Anthropogenic impact and lead pollution throughout the Holocene in Southern Iberia. Sci Total Environ 449:451–460

    Article  CAS  Google Scholar 

  • Gautam RK, Sharma SK, Mahiya S, Chattopadhyaya MC (2014) Contamination of heavy metals in aquatic media: transport, toxicity and technologies for remediation (Chapter 1). In: Sharma SK (ed) Heavy metals in water: presence. Removal and safety

    Google Scholar 

  • Geisler CD, Schmidt D (1991) An overview of chromium in the marine environment. Ocean Dyn 44(4):185–196. https://doi.org/10.1007/BF02226462

    Article  Google Scholar 

  • Giga W (2009) The Rhine red, the fish dead-the 1986 Schweizerhalle disaster, a retrospect and long-term impact assessment. Environ Sci Pollut Res Int

    Google Scholar 

  • Gillmore ML, Gissi F, Golding LA, Stauber JL, Reichelt-Brushett AJ, Severati A, Humphrey CA, Jolley DF (2020) Effects of dissolved nickel and nickel-contaminated suspended sediment on the scleractinian coral, Acropora muricata. Mar Pollut Bull 152: https://doi.org/10.1016/j.marpolbul.2020.110886

    Article  CAS  Google Scholar 

  • Gissi F, Stauber J, Reichelt-Brushett AJ, Harrison PL, Jolley DF (2017) Inhibition in fertilisation of coral gametes following exposure to nickel and copper. Ecotoxicol Environ Saf 145:32–41

    Article  CAS  Google Scholar 

  • Graham RD, Hannam RJ, Uren NC (1988) Manganese in soils and plants, manganese in soils and plants. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-009-2817-6

  • Grosell M (2011) Copper. In: Wood, Farrell, Brauner (eds) Fish physiology. Homeostasis and toxicity of essential metals, vol 31, pp 54–110

    Google Scholar 

  • Guieu C, Bonnet S, Wagener T, Loÿe-Pilot M-D (2005) Biomass burning as a source of dissolved iron to the open ocean? Geophys Res Lett 32:L19608

    Article  CAS  Google Scholar 

  • Guzma′n HM, Jime′nez CE (1992) Contamination of coral reefs by heavy metals along the Caribbean Coast of Central America (Costa Rica and Panama). Mar Pollut Bull 24:554–561

    Article  Google Scholar 

  • Gworek B, Bemowska-Kalabun O, Kijeńska M, Wrzosek-Jakubowska J (2016) Mercury in marine and ocean waters-a review. Water Air Soil Pollution 227:371. https://doi.org/10.1007/s11270-016-3060-3

    Article  CAS  Google Scholar 

  • Hagelstein K (2009) Globally sustainable manganese metal production and use. J Environ Manage 90:3736–3740. https://doi.org/10.1016/j.jenvman.2008.05.025

    Article  CAS  Google Scholar 

  • Hansel CM (2017) Manganese in Marine Microbiology. Adv Microb Physiol 70:37–83. https://doi.org/10.1016/bs.ampbs.2017.01.005 Epub 2017 Mar 14 PMID: 28528651

    Article  CAS  Google Scholar 

  • Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25(1):1–24

    Article  CAS  Google Scholar 

  • Haynes D, Christie C, Marshall P, Dobbs K (2002) Antifoulant concentrations at the site of the Bunga Teratai Satu grounding, Great Barrier Reef, Australia. Mar Pollut Bull 44:968–972

    Article  CAS  Google Scholar 

  • Henriques B, Rocha LS, Lopes CB, Figueira P, Monteiro RJR, Duarte AC, Pardal MA, Pereira E (2015) Study on bioaccumulation and biosorption of mercury by living marine macroalgae: prospecting for a new remediation biotechnology applied to saline waters. Chem Eng J 281:759–770

    Article  CAS  Google Scholar 

  • Hooda PS (2010) Trace elements in soils. Wiley Publication

    Google Scholar 

  • Hosono T, Su C, Delinom R, Umezawa Y, Toyota T, Kaneko S, Taniguchi M (2011) Decline in heavy metal contamination in marine sediments in Jakarta Bay, Indonesia due to increasing environmental regulations. Estuar Coast Shelf Sci 92:297–306

    Article  CAS  Google Scholar 

  • Howe PD, Dobson S (2002) Silver and silver compounds: Environmental aspects. Concise International Chemical Assessment Document 44. WHO Geneva. https://apps.who.int/iris/bitstream/10665/42553/1/9241530448.pdf

  • Howe PL, Reichelt-Brushett AJ, Clark MW (2014) Investigating lethal and sublethal effects of the trace metals cadmium, cobalt, lead, nickel and zinc on the anemone Aiptasia pulchella, a cnidarian representative for ecotoxicology in tropical marine environments. Mar Freshw Res 65:551–561. CSIRO Publishing. http://dx.doi.org/10.1071/MF13195

  • Hudspith M, Reichelt-Brushett AJ, Harrison PL (2017) Factors affecting the toxicity of trace metals to fertilization success in broadcast spawning marine invertebrates: a review. Aquat Toxicol 184:1–13. https://doi.org/10.1016/j.aquatox.2016.12.019

    Article  CAS  Google Scholar 

  • International Lead Association (2018) Lead in aquatic environments: understanding the science. https://www.ila-lead.org/responsibility/lead-in-aquatic-environments–understanding-the-science

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72. https://doi.org/10.2478/intox-2014-0009

    Article  CAS  Google Scholar 

  • Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N, Cao JJ, Boyd PW, Duce RA, Hunter KA, Kawahata H, Kubilay N, La Roche J, Liss PS, Mahowald N, Prospero JM, Ridgwell AJ, Tegen I, Torres R (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67–71

    Article  CAS  Google Scholar 

  • Jones RJ (2007) Chemical contamination of a coral reef by the grounding of a cruise ship in Bermuda. Mar Pollut Bull 54:905–911

    Article  CAS  Google Scholar 

  • Kabata-Pendia A (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Kaur S, Kamli MR, Ali A (2011) Role of arsenic and its resistance in nature. Can J Microbiol 57:769–774. https://doi.org/10.1139/w11-062

    Article  CAS  Google Scholar 

  • Kim BE, Nevitt T, Thiele DJ (2008) Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol 4:176–185

    Article  CAS  Google Scholar 

  • Kim BM, Rhee JS, Jeong CB, Seo JS, Park GS, Lee YM, Lee JS (2014) Heavy metals induce oxidative stress and trigger oxidative stress-mediated heat shock protein (hsp) modulation in the intertidal copepod Tigriopusjaponicus. Comp Biochem Physiol C Toxicol Pharmacol 66:65–74. https://doi.org/10.1016/j.cbpc.2014.07.005

    Article  CAS  Google Scholar 

  • Klaassen CD, Liu J, Diwan BA (2009) Metallothionein protection of Cadmium toxicity. Toxicol Appl Pharmacol 283(3):215–220. https://doi.org/10.1016/j.taap.2009.03.026

    Article  CAS  Google Scholar 

  • Kroon FJ, Berry KLE, Brinkman DL, Kookana R, Leusch FDL, Melvin SD, Neale PA, Negri AP, Puotinen M, Tsang JJ, van de Merwe JP, Williams M (2020) Sources, presence and potential effects of contaminants of emerging concern in the marine environments of the Great Barrier Reef and Torres Strait, Australia. Sci Total Environ 719 (135140). https://doi.org/10.1016/j.scitotenv.2019.135140

  • Kwon SY, Blum JD, Yin R, Tsui MTK, Yang YH, Choi JW (2020) Mercury stable isotopes for monitoring the effectiveness of the Minamata Convention on Mercury. Earth Sci Rev 203: https://doi.org/10.1016/j.earscirev.2020.103111

    Article  CAS  Google Scholar 

  • Lata R and Rohindra D (2002) Heavy Metals. In: Khurma J, Sutcliffe S (eds) Major environmental issues: an outreach to the South Pacific

    Google Scholar 

  • Lenntech (2006) Heavy metals. http://www.lenntech.com/heavy-metals.htm

  • Libes S (1992) An introduction to marine biogeochemistry. Wiley, Singapore

    Google Scholar 

  • Loganathan P, Hedley MJ (1997) Downward movement of cadmium and phosphorous from phosphate fertilizers in a pasture soil in New Zealand. Environ Pollut 95:319–324. https://doi.org/10.1016/s0269-7491(96)00142-x

    Article  CAS  Google Scholar 

  • Luo C, Mahowald N, Bond T, Chuang PY, Artaxo P, Siefert R, Chen Y, Schauer J (2008) Combustion iron distribution and deposition. Glob Biogeochem Cycles 22, GB1012. https://doi.org/10.1029/2007GB002964

  • Luoma SN (2008) Silver nanotechnologies and the environment: old problems and new challenges?. Woodrow Wilson International Centre for Scholars or the PEW Charitable Trusts, Washington DC

    Google Scholar 

  • Luoma SN, Ho YB, Bryan GW (1995) Fate, bioavailability and toxicity of silver in estuarine environments. Mar Pollut Bull 31:44–54

    Article  CAS  Google Scholar 

  • Luoma SN, Rainbow PS (2005) Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ Sci Technol 39(7):1921–1931

    Article  CAS  Google Scholar 

  • Lyman SN, Cheng I, Gratz LE, Weiss-Penzias P, Zhang L (2020) An updated review of atmospheric mercury. Sci Total Environ 707(135575). https://doi.org/10.1016/j.scitotenv.2019.135575

  • Maata M, Koshy K (2001) A study on tributyltin contamination of marine sediments in the major ports of Fiji. South Pac J Nat Sci 19(1):1–4

    Article  Google Scholar 

  • Mahowald NM, Engelstaedter S, Luo C, Sealy A, Artaxo P, Benitez-Nelson C, Bonnet S, Chen Y, Chuang PY, Cohen DD, Dulac F, Herut B, Johansen AM, Kubilay N, Losno R, Maenhaut W, Paytan A, Prospero JM, Shank LM, Siefert RL (2009) Atmospheric iron deposition: Global distribution, variability and human perturbations. Ann Rev Mar Sci 1(1):245–278

    Article  Google Scholar 

  • Mahowald NM, Kloster S, Engelstaedter S, Moore JK, Mukhopadhyay S, McConnell JR, Albani S, Doney SC, Bhattacharya A, Curran MAJ, Flanner MG, Hoffman FM, Lawrence DM, Lindsay K, Mayewski PA, Neff J, Rothenberg D, Thomas E, Thornton PE, Zender CS (2010) Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmos Chem Phys 10:10875–10893

    Article  CAS  Google Scholar 

  • Main WPL, Ross C, Bielmyer GK (2010) Copper accumulation and oxidative stress in the sea anemone, Aiptasia pallida, after waterborne copper exposure. Comp Biochem Physiol Part C 151:216–221

    CAS  Google Scholar 

  • Manahan SE (2003) Toxicological chemistry and biochemistry. Lewis Publishers, CRC Press Company, Boca Raton-London-New York-Washington

    Google Scholar 

  • Mance G (1987) Pollution threat of heavy metals in aquatic environments. Elsevier, Amsterdam, p 372

    Google Scholar 

  • Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: An overview with special reference to phytoremediation. Int J Environ Sci Technol 11:843–872

    Article  CAS  Google Scholar 

  • Marsden ID, Rainbow PS (2004) Does the accumulation of trace metals in crustaeceans affect their ecology-the amphipod example? J Exp Mar Biol Ecol 300:373–408

    Article  CAS  Google Scholar 

  • Martin JH (1990) Glacial–interglacial CO2 change: the iron hypothesis. Paleoceanography 5:1–13

    Article  Google Scholar 

  • Marx SK, McGowan HA (2010) Long-distance transport of urban and industrial metals and their incorporation into the environment: sources, transport pathways and historical trends. In: Zereini F, Wiseman CLS (eds) Urban airborne particulate matter: origin, chemistry, fate and health impacts. Springer, Berlin

    Google Scholar 

  • McComb J, Alexander TC, Han FX, Tchounwou PB (2014) Understanding biogeochemical cycling of trace elements and heavy metals in estuarine ecosystems. J Bioremediat Biodegrad 5:1000e148. https://doi.org/10.4172/2155-6199.1000e148

  • McGeer JC, Szebedinszky C, McDonald DG, Wood CM (2000) Effects of chronic sublethal exposure to waterborne Cu, Cd, or Zn in rainbow trout 1: ionoregulatory disturbance and metabolic costs. Aquat Toxicol 50:233–245

    Google Scholar 

  • McLusky DS, Bryant V, Campbell R (1986) The effects of temperature and salinity on the toxicity of heavy metals to marine and estuarine invertebrates. Oceanogr Mar Biol-Ann Rev 24:481–520

    CAS  Google Scholar 

  • Mead C, Herckes P, Majestic BJ, Anbar AD (2013) Source apportionment of aerosol iron in the marine environment using iron isotope analysis. Geophys Res Lett 40:5722–5727. https://doi.org/10.1002/2013GL057713

    Article  CAS  Google Scholar 

  • Millero FJ, Woosley R, DiTrolio BR, Waters J (2009) Effects of the ocean acidification on the speciation of metals in seawater. Oceanography 22:72–85

    Article  Google Scholar 

  • Mills MM, Ridame C, Davey M, La Roche J, Geider RJ (2004) Iron and phosphorous co-limit nitrogen fixation in the eastern topical North Atlantic. Nature 429:292–232

    Article  CAS  Google Scholar 

  • Mondal P, Reichelt-Brushett AJ, Jonathan MP, Sujitha SB, Sarkar SK (2017) Pollution evaluation of total and acid-leachable trace elements in surface sediments of Hooghly River Estuary and Sundarban Mangrove Wetland (India). Environ Sci Pollut. https://doi.org/10.1007/s11356-017-0915-0

    Article  Google Scholar 

  • Mondal K, Ghosh S, Haque S (2018) A review on contamination, bioaccumulation and toxic effect of cadmium, mercury and lead on freshwater fishes. Int J Zool Stud 3(2):153–159

    Google Scholar 

  • Moore JW (1991) Manganese. In: Inorganic contaminants of surface water. Springer series on environmental management. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3004-5_15

  • Morel F, Reinfelder J, Roberts S, Chamberlain C, Lee J, Yee D (1994) Zinc and carbon co-limitation of marine phytoplankton. Nature 369:740–742

    Article  CAS  Google Scholar 

  • Mudd GM (2010) Global trends and environmental issues in nickel mining: sulphides versus laterites. Ore Geol Rev 38:9–26

    Article  Google Scholar 

  • Nair M, Joseph T, Balachandran KK, Nair KKC, Paimpillil JS (2003) Arsenic enrichment in estuarine sediments: Impact of iron and manganese mining. In: Ahmed MF, Ali MA, Adeel Z (eds) Fate of arsenic in the environment, pp 137–145

    Google Scholar 

  • Namieśnik J, Rabajczyk A (2010) The speciation and physicochemical forms of metals in surface waters and sediments. Chem Speciat Bioavailab 22(1):1–24. https://doi.org/10.3184/095422910X12632119406391

    Article  CAS  Google Scholar 

  • Naser HA (2013) Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: a review. Mar Pollut Bull 72:6–13

    Article  CAS  Google Scholar 

  • Natale G, Basso N, Ronco A (2000) Effect of Cr (VI) on early life stages of three species of hylid frogs (Amphibia, Anura) from South America. Environ Toxicol 15(5):509–512. https://doi.org/10.1002/1522-7278(2000)15:5%3c509:AID-TOX21%3e3.0.CO;2-S

    Article  CAS  Google Scholar 

  • Neely WB (1980) Chemicals in the environment: distribution, transport, fate, analysis. Marcel Dekker, New York, p 245

    Google Scholar 

  • Negri AP, Heyward AJ (2001) Inhibition of coral fertilization and larval metamorphosis by Tributyltin and copper. Mar Environ Res 51:17–27

    Article  CAS  Google Scholar 

  • Negri AP, Smith LD, Webster NS, Heyward A (2002) Understanding ship grounding impacts on a coral reef: potential effects of antifoulant paint contamination on coral recruitment. Mar Pollut Bull 44:111–117

    Article  CAS  Google Scholar 

  • Nordberg GF, Fowler BA, Nordberg M, Friberg LT (2007) Handbook on the toxicology of metals, 3rd edn. Elsevier Inc

    Google Scholar 

  • Obi E, Okafor C, Igwebe A, Ebenebe J, Johnson Afonne O, Ifediata F, Orisakwe OE, Nriagu JO, Basu N (2015) Elevated prenatal methylmercury exposure in Nigeria: evidence from maternal and cord blood. Chemosphere 119:485–489

    Article  CAS  Google Scholar 

  • Okoro HK, Fatoki OS, Adekola FA, Ximba BJ, Snyman RG (2011) Sources, environmental levels and toxicity of organotin in marine environment—a review. Asian J Chem 23(2):473–482

    CAS  Google Scholar 

  • Okoro HK, Fatoki OS, Adekola FA, Ximba BJ, Snyman RG (2012) a review of sequential extraction procedures for heavy metals speciation in soil and sediments 1:181. https://doi.org/10.4172/scientificreports.181

    Article  Google Scholar 

  • Pastorok RA, Bilyard GR (1985) Effects of sewage pollution on coral reef communities. Mar Ecol Prog Ser 21:175–189

    Article  Google Scholar 

  • Patel P, Bielmyer-Fraser GK (2015) The influence of salinity and copper exposure on copper accumulation and physiological impairment in the sea anemone, Exaiptasia Pallida. Comparative biochemistry and physiology part C 168: 39–47

    Google Scholar 

  • Pawlik-Skowrońska B, Kaczorowska R, Skowroński T (1997) The impact of inorganic tin on the planktonic cyanobacterium synechocystis aquatilis: the effect of pH and humic acid. Environ Pollut 97(1–2):65–69

    Article  Google Scholar 

  • Pekey H (2006) The distribution and sources of heavy metals in Izmit Bay surface sediments affected by a polluted stream. Mar Pollut Bull 52:1197–1208

    Article  CAS  Google Scholar 

  • Peters EC, Gassman NJ, Firman JC, Richmond RH, Power EA (1997) Ecotoxicology of tropical marine ecosystems. Environ Toxicol Chem 16:12–40

    Article  CAS  Google Scholar 

  • Philips DJH, Rainbow PS (1994) Biomonitoring of trace aquatic contaminants, 2nd edn. London, Chapman and Hall

    Google Scholar 

  • Pinsino A, Matranga V, Roccheri MC (2012). Manganese: a new emerging contaminant in the environment. In: Srivastava J (ed) Environmental contamination. ISBN: 978-953-51- 0120-8, InTech. http://www.intechopen.com/books/environmental-contamination/manganesea-new-emerging-contaminant-in-the-environment

  • Purcell TW, Peters JJ (1998) Sources of silver in the environment. Environ Toxicol Chem 17:539–546

    Article  CAS  Google Scholar 

  • Rainbow PS (1995) Biomonitoring of heavy metal availability in the marine environment. Mar Pollut Bull 31(4–12):183–192

    Article  CAS  Google Scholar 

  • Rainbow PS (1997) Trace metal accumulation in marine invertebrates: marine biology or marine chemistry. J Mar Biol Assoc U K 77:195–210

    Article  CAS  Google Scholar 

  • Raiswell R, Canfield DE (2012) The iron biogeochemical cycle past and present. Geocheml Persp 1(1)

    Google Scholar 

  • Reichelt-Brushett AJ (2012) Risk assessment and ecotoxicology: limitations and recommendations for ocean disposal of mine waste in the coral triangle. Oceanography 25(4):40–51. https://doi.org/10.5670/oceanog.2012.66

    Article  Google Scholar 

  • Reichelt-Brushett AJ, Harrison PL (1999) The effect of copper, zinc and cadmium on fertilization success of gametes from scleractinian reef corals. Mar Pollut Bull 38:182–187

    Article  CAS  Google Scholar 

  • Reichelt-Brushett AJ, Hudspith M (2016) The effects of metals of emerging concern on the fertilization success of gametes of the tropical scleractinian coral Platygyra daedalea. Chemosphere 150:398–406

    Article  CAS  Google Scholar 

  • Reichelt-Brushett AJ, Stone J, Howe P, Thomas B, Clark M, Male Y, Nanlohy A, Butcher P (2017) Geochemistry and mercury contamination in receiving environments of artisanal mining wastes and identified concerns for food safety. Environ Res 152:407–418

    Article  CAS  Google Scholar 

  • Richir J, Gobert S (2016) Trace elements in marine environments: occurrence, threats and monitoring with special focus on the coastal mediterranean. J Environ Anal Toxicol 6:349. https://doi.org/10.4172/2161-0525.1000349

    Article  Google Scholar 

  • Rieuwerts J (2015) The elements of environmental pollution, 1st edn. Routledge

    Google Scholar 

  • Rodrigo AG (1989) Surficial sediment heavy metal association in the Avon-Heathcote estuary, New Zealand. N Z J Mar Freshw Resour: 263–274

    Google Scholar 

  • Rodrigues P, Ferrari RG, dos Santos LN, Junior CAC (2019) Mercury in aquatic fauna contamination: a systematic review on its dynamics and potential health risks. J Environ Sci 84:205–218. https://doi.org/10.1016/j.jes.2019.02.018

    Article  Google Scholar 

  • Röllin H (2011) Manganese: environmental pollution and health effects. In:Nriagu JO (ed) Encyclopedia of environmental health

    Google Scholar 

  • Selin NE (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resour 34(1):43–63. https://doi.org/10.1146/annurev.environ.051308.084314

    Article  Google Scholar 

  • Siddiqui S, Bielmyer-Fraser GK (2015) Responses of the sea anemone, Exaiptasia pallida, to ocean acidification conditions and copper exposure. Aquat Toxicol 167:228–239

    Article  CAS  Google Scholar 

  • Siddiqui S, Goddard RH, Bielmyer-Fraser GK (2015) Comparative effects of dissolved copper and copper oxide nanoparticle exposure to the sea anemone, Exaiptasia pallida. Aquat Toxicol 160:205–213

    Article  CAS  Google Scholar 

  • Shah S (2008) Study of heavy metal accumulation in scleractinian corals of Viti Levu, Fiji Islands, unpublished MSc thesis. Faculty of Science, Technology and Environment, The University of the South Pacific, Fiji

    Google Scholar 

  • Slemr F, Weigelt A, Ebinghaus R, Bieser J, Brenninkmeijer CAM, Rauthe-Schoch A, Hermann M, Martinsson BG, vanVelthoven P, Bönisch H, Neumaier M, Zahn A, Ziereis H (2018) Mercury distribution in the upper troposphere and lowermost stratosphere according to measurements by the IAGOS-CARIBIC observatory: 2014–2016. Atmos Chem Phys 18:12329–12343. https://doi.org/10.5194/acp-18-12329-2018

    Article  CAS  Google Scholar 

  • Smith LD, Negri AP, Philipp E, Webster NS, Heyward AJ (2003) The effects of antifoulant paint contaminated sediments on coral recruits and branchlets. Mar Biol 143:651–657

    Article  CAS  Google Scholar 

  • Solomon F (2008) Impacts of heavy metals on aquatic systems and human health. Mining.com. www.infomine.com/library/publications/docs/mining.com/Apr2008c.pdf

  • Solomon F (2009) Impacts of copper on aquatic ecosystems and human health. Mining.com. http://www.ushydrotech.com/files/6714/1409/9604/Impacts_of_Copper_on_Aquatic_Ecosystems_and_human_Health.pdf

  • Summer K, Reichelt-Brushett A, Howe P (2019) Toxicity of manganese to various lfe stages of selected marine cnidarian species. Ecotoxicol Environ Saf 167:83–94. https://doi.org/10.1016/j.ecoenv.2018.09.116

    Article  CAS  Google Scholar 

  • Suvarapu LN, Seo YK, Bael SO (2013) Speciation and determination of mercury by various analytical techniques. Rev Anal Chem 32(3):225–245. https://doi.org/10.1515/revac-2013-0003

    Article  CAS  Google Scholar 

  • Tagliabue A, Bowie AR, Boyd PW, Buck KN, Johnson KS, Saito MA (2017) The integral role of iron in ocean biogeochemistry. Nature 543:51–59

    Article  CAS  Google Scholar 

  • Takahashi Y, Furukawa T, Kanai Y, Uematsu M, Zheng G, Marcus MA (2013) Seasonal changes in Fe species and soluble Fe concentration in the atmosphere in the Northwest Pacific region based on the analysis of aerosols collected in Tsukuba, Japan. Atmos Chem Phys 13(7695–7710)

    Google Scholar 

  • Tamás MJ, Sharma SK, Ibstedt S, Jacobson T, Christen P (2014) Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules 4:252–267. https://doi.org/10.3390/biom4010252

    Article  CAS  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. EXS 101:133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  Google Scholar 

  • Tornero V, Hanke G (2016) Chemical contaminants entering the marine environment from sea-based sources: a review with a focus on European sea. Mar Pollut Bull 112:17–38

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (1993) Standard methods for the examination of water and wastewater. Am Public Health Assoc, US

    Google Scholar 

  • VanBriesen JM, Small M, Weber C, Wilson J (2010) Modelling chemical speciation: thermodynamics, kinetics and uncertainty. In: Hanrahan G (ed) Modelling of pollutants in complex environmental systems, Chap 4, vol II. ILM Publications, pp 133–149

    Google Scholar 

  • Violante A, Cozzolino V, Perelomov L, Caporale AG, Pigna M (2010) Mobility and bioavailability of heavy metals and metalloids in soil environments. J Soil Sci Plant Nutr 10(3):268–292

    Article  Google Scholar 

  • Vosyliene MZ, Jankaite A (2006) Effect of heavy metal model mixture on rainbow trout biological parameters. Ekologia 4:12–17

    Google Scholar 

  • Wang WC, Mao H, Ma, Yang WX (2014a) Characteristics, functions and applications of metallothioneins in aquatic vertebrates: review article. Front Mar Sci 1(Article 34):1–12. https://doi.org/10.3389/fmars.2014.00034

  • Wang Z, Kwok KWH, Lui GCS, Zhou GJ, Lee JS, Lam MHW, Leung KMY (2014b) The difference between temperate and tropical saltwater species’ acute sensitivity to chemicals is relatively small. Chemosphere 105:31–43. https://doi.org/10.1016/j.chemosphere.2013.10.066

    Article  CAS  Google Scholar 

  • Wang R, Balkanski Y, Boucher O, Bopp L, Chappell A, Ciais P, Hauglustaine D, Penuelas J, Tao S (2015) Sources, transport and deposition of iron in the global atmosphere. Atmosp Chem Phys 15:6247–6270. www.atmos-chem-phys.net/15/6247/2015/. https://doi.org/10.5194/acp-15-6247-2015

  • Weigelt A, Slemr F, Ebinghaus R, Pirrone N, Bieser J, Bödewadt J, Esposito G, van Velthoven PFJ (2016) Mercury emissions of a coal-fired power plant in Germany. Atmosp Chem Phys 16:13653–13668. www.atmos-chem-phys.net/16/13653/2016/. https://doi.org/10.5194/acp-16-13653-2016

  • Wells ML, Priceb NM, Bruland KW (1995) Iron chemistry in seawater and its relationship to phytoplankton: a workshop report. Mar Chem 48:157–182

    Article  CAS  Google Scholar 

  • World Health Organization (2017) Lead poisoning and health. http://www.who.int/mediacentre/factsheets/fs379/en/

  • World Health Organization (1996) Trace elements in human nutrition and health. WHO Library Cataloguing, Geneva, p 361

    Google Scholar 

  • Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L (2016) A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res 23:8244–8259. https://doi.org/10.1007/s11356-016-6333-x

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. In: International Scholarly Research Network (ISRN) ecology, vol 2011, Article ID 402647, 20 pp. https://doi.org/10.5402/2011/402647

  • Ye BJ, Kim BG, Jeon MJ, Kim SY, Kim HC, Jang TW, Chae HJ, Choi WJ, Ha MH, Hong YS (2016) Evaluation of mercury exposure level, clinical diagnosis and treatment for mercury intoxication. Ann Occup Environ Med 28:5. https://doi.org/10.1186/s40557-015-0086-8

    Article  Google Scholar 

  • Zeng X, Chen X, Zhuang J (2015) The positive relationship between ocean acidification and pollution. Mar Pollut Bull 91:14–21. https://doi.org/10.1016/j.marpolbul2014.12.001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia B. Shah .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shah, S.B. (2021). Heavy Metals in the Marine Environment—An Overview. In: Heavy Metals in Scleractinian Corals. SpringerBriefs in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-73613-2_1

Download citation

Publish with us

Policies and ethics