Skip to main content

Radioactive Noble Gas Detection and Measurement with Plastic Scintillators

  • Chapter
  • First Online:
Plastic Scintillators

Abstract

Radioactive noble gas isotopes considered in this chapter are fission products of uranium and plutonium, neutron activation products of calcium or radon isotopes belonging to the natural decay chains of uranium and thorium. The measurement of radon isotopes and decay products is important as these radionuclides represent a significant health hazard. The measurement of the other noble gas is of paramount interest for the detection or monitoring of both civil and nuclear activities. The decay data of the main noble gas radionuclides of interest are reported, and noble gas absorption phenomena in plastic polymers are described in detail. Then general applications of plastic scintillators in noble gas atmospheric measurement systems are described. Eventually, specific aspects of radon measurement using plastic scintillators are detailed. This concerns the shape of alpha peaks and the application of alpha/beta discrimination to the measurement of radon and their radioactive progenies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.B. Kalinowski, M.P. Tuma, J. Environ. Radioact. 100(1), 58 (2009)

    Article  Google Scholar 

  2. Legifrance. https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000031832595. Accessed 15 Dec 2020

  3. W. Nitta, T. Sanada, K. Isogai, C. Schlosser, J. Nucl. Sci. Technol. 51(5), 712 (2014)

    Google Scholar 

  4. T.R. England, B.F. Rider, Los Alamos National Laboratory Report LAUR-94–3106, (October 1994)

    Google Scholar 

  5. W.R. Schell, M.J. Tobin, D.J. Marsan, C.W. Schell, J. Vives-Batlle, S.R. Yoon, Nucl. Instr. Methods A 385(2), 277 (1997)

    Article  ADS  Google Scholar 

  6. P.H. Gudiksen, M.H. Dickerson, Lawrence Livermore National Laboratory UCRL-JC-104077 (1990)

    Google Scholar 

  7. J. Beyea, J. De Cicco. Reestimating the noble gas release from the Three Mile Island accident. Final report. National Audubon Society, prepared for the Three Mile Island Public Health Fund (1992)

    Google Scholar 

  8. Chernobyl's legacy: health, environmental and socio-economic impacts and recommendations to the governments of Belarus, the Russian Federation and Ukraine. IAEA (2005)

    Google Scholar 

  9. T.W. Bowyer, S.R. Biegalski, M. Cooper, P.W. Eslinger, D. Haas, J.C. Hayes, H.S. Miley, D.J. Strom, V. Woods, J. Environ. Radioact. 102(7), 681 (2011)

    Article  Google Scholar 

  10. A. Stohl, P. Seibert, G. Wotawa, J. Environ. Radioact. 112, 155 (2012)

    Article  Google Scholar 

  11. UNSCEAR 2013 Report, annex A

    Google Scholar 

  12. P. Achim, P. Gross, G. Le Petit, T. Taffary, P. Armand, Contribution of isotopes production facilities and nuclear power plants to Xe-133 worldwide atmospheric background, in Poster presented at the Science and Technology 2011 (SnT 2011) (Vienna, 8–11 June 2011)

    Google Scholar 

  13. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/radon-and-health. Accessed 29 Nov 2020

  14. Laboratoire National Henri Becquerel. https://www.lnhb.fr/donnees-nucleaires/donnees-nucleaires-tableau. Accessed 29 Nov 2020

  15. Comprehensive Nuclear-Test-Ban Treaty Organization. https://www.ctbto.org/map/. Accessed 29 Nov 2020

  16. J.I. McIntyre, K.H. Abel, T.W. Bowyer, J.C. Hayes, T.R. Heimbigner, M.E. Panisko, P.L. Reeder, R.C. Thompson, J. Radioanal. Nucl. Chem. 248(3), 629 (2001)

    Article  Google Scholar 

  17. Y. Popov, Kompleks apparatury K-522-D. TUShK.412.123.312RE (K-522-D Complex of Equipment) (St. Petersburg: Radievyi institut, 1996)

    Google Scholar 

  18. Y.S. Popov, N.M. Kazarinov, V.Y. Popov, Y.M. Rykov, N.V. Skirda, Instrum. Exp. Tech. 48(3), 380 (2005). Translated from Prib. Tekh. Eksp. 3, 115 (2005)

    Google Scholar 

  19. V.V. Prelovskii, N.M. Kazarinov, A.Y. Donets, V.Y. Popov, I.Y. Popov, N.V. Skirda, Instrum. Exp. Tech. 50(3), 393 (2007)

    Article  Google Scholar 

  20. A. Ringbom, T. Larson, A. Axelsson, K. Elmgren, C. Johansson, Nucl. Instr. Methods A 508(3), 542 (2003)

    Article  ADS  Google Scholar 

  21. Sauna Systems, Sauna-II. https://www.saunasystems.se/_resources/file/sauna_web.pdf. Accessed 28 Nov 2020

  22. L. Bläckberg, Dissertation, Uppsala universitet (2011)

    Google Scholar 

  23. S.A. Czyz, A.T. Farsoni, L. Ranjbar, Nucl. Instr. Methods A 884, 64 (2018)

    Article  ADS  Google Scholar 

  24. K. Takasaki, H. Kobayashi, H. Suzuki, S. Ushigome, J. Nucl. Sci. Technol. 47(3), 255 (2010)

    Article  Google Scholar 

  25. PEO Radiation Technology, CMS Noble Gas Monitor. https://www.peo-radiation-technology.com/en/product/cms-noble-gas-monitor-lab-impex-systems/.. Last accessed 28 Nov 2020

  26. Y.G. Ko, H. Kim, J.Y. Park, S.D. Choi, J.M. Lim, G.S. Choi, W. Lee, Monitoring of Kr-85 by using BfS-IAR system, in Paper Presented at Transactions of the Korean Nuclear Society Spring Meeting (Jeju, Korea, 17–18 May 2018)

    Google Scholar 

  27. S. Yamamoto, K. Yamasoto, T. Iida, IEEE Trans. Nucl. Sci. 46(6), 1929 (1999)

    Article  ADS  Google Scholar 

  28. S. Yamamoto, K. Yamasoto, T. Iida, Development of a real-time radon monitoring system for simultaneous measurements in multiple sites, in Paper presented at IEEE Nuclear Science Symposium and Medical Imaging Conference (Toronto, Canada, 8–14 Nov. 1998)

    Google Scholar 

  29. S. Yamamoto, T. Iida, Nucl. Instr. Methods A 418(2–3), 387 (1998)

    Article  ADS  Google Scholar 

  30. S. Yamamoto, K. Kato, N. Fujita, M. Yamashita, T. Nishimoto, H. Kameyama, S. Abe, Sci. Rep. 8, 10976 (2018)

    Article  ADS  Google Scholar 

  31. I.S. Kim, I.J. Lee, A. Appleby, E.A. Christman, M.J. Liepmann, G.H. Sigel Jr., Nucl. Instr. Methods A 356(2–3), 537 (1995)

    Article  ADS  Google Scholar 

  32. I.S. Kim, I.J. Lee, A. Appleby, E.A. Christman, M.J. Liepmann, G.H. Sigel Jr., Radiat. Prot. Dosim. 61(1–3), 77 (1995)

    Article  Google Scholar 

  33. I.S. Kim, A. Appleby, G.H. Sigel Jr., Nucl. Instr. Methods A 390(3), 419 (1997)

    Article  ADS  Google Scholar 

  34. A. Appleby, I.S. Kim, Radiat. Phys. Chem. 55(5–6), 749 (1999)

    Article  ADS  Google Scholar 

  35. K. Shitashima, K. Miyakawa, K. Karasawa, Development and oceanographic applications of underwater in-situ radon sensor using plastic scintillator, in Paper Presented at IEEE Sensors (Christchurch, New-Zealand, 25–28 Oct. 2009)

    Google Scholar 

  36. K.K. Mitev, Appl. Radiat. Isot. 110, 236 (2016)

    Article  Google Scholar 

  37. K.K. Mitev, Thoron (220Rn) detection with plastic scintillators, in Paper presented at IEEE Nuclear Science Symposium and Medical Imaging Conference (San Diego, USA, 31 Oct.–7 Nov. 2015)

    Google Scholar 

  38. L.M. Santiago, H. Bagán, A. Tarancón, J.F. Garcia, Nucl. Instr. Methods A 698, 106 (2013)

    Article  ADS  Google Scholar 

  39. K. Mitev, I. Dimitrova, A. Tarancón, D. Pressyanov, L. Tsankov, T. Boshkova, S. Georgiev, R. Sekalova, J.F. Garcia, IEEE Trans. Nucl. Sci. 63(2), 1209 (2016)

    Article  ADS  Google Scholar 

  40. K.K. Mitev, L.T. Tsankov, M.G. Mitev, C.C. Dutsov, S.B. Georgiev, S.T. Kolev, N.M. Markov, T.H. Todorov, Design and tests of a detector for 222Rn in soil-gas measurements based on 222Rn absorbing scintillating polymers, in Paper Presented at IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (Atlanta, USA, 21–28 Oct. 2017)

    Google Scholar 

  41. K.K. Mitev, C.C. Dutsov, L.T. Tsankov, S.B. Georgiev, M.G. Mitev, N.M. Markov, T.H. Todorov, Design and field tests of scintillation spectrometer for continuous radon in soil-gas monitoring, in Paper presented at IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC) (Sydney, Australia, 10–17 Nov. 2018)

    Google Scholar 

  42. K. Mitev, V. Jordanov, M. Hamel, C. Dutsov, S. Georgiev, P. Cassette, Development of a portable scintillation spectrometer with alpha-/beta- and neutron-/gamma- pulse-shape discrimination capabilities, in Paper presented at IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC) (Sydney, Australia, 10–17 Nov. 2018)

    Google Scholar 

  43. Y. Morishita, A. Di Fulvio, S.D. Clarke, K.J. Kearfott, S.A. Pozzi, Nucl. Instr. Methods A 935, 207 (2019)

    Article  ADS  Google Scholar 

  44. Y. Morishita, Y. Ye, L. Mata, S.A. Pozzi, K.J. Kearfott, Radiat. Meas. 137, 106428 (2020)

    Article  Google Scholar 

  45. D. Pressyanov, K. Mitev, S. Georgiev, I. Dimitrova, Nucl. Instr. Methods A 598(2), 620 (2009)

    Article  ADS  Google Scholar 

  46. D. Pressyanov, S. Georgiev, I. Dimitrova, K. Mitev, T. Boshkova, Radiat. Prot. Dosim. 145(2–3), 123 (2011)

    Article  Google Scholar 

  47. K. Rovenská, M. Jiránek, Appl. Radiat. Isot. 70(4), 802 (2012)

    Article  Google Scholar 

  48. K. Rovenska, M. Jiránek, Radiat. Prot. Dosim. 145(2–3), 127 (2011)

    Article  Google Scholar 

  49. D. Pressyanov, K. Mitev, I. Dimitrova, S. Georgiev, Nucl. Instr. Methods A 629(1), 323 (2011)

    Article  ADS  Google Scholar 

  50. K. Mitev, P. Cassette, S. Georgiev, I. Dimitrova, B. Sabot, T. Boshkova, I. Tartès, D. Pressyanov, Appl. Radiat. Isot. 109, 270 (2016)

    Article  Google Scholar 

  51. K. Mitev, P. Cassette, I. Tartès, S. Georgiev, I. Dimitrova, D. Pressyanov, Appl. Radiat. Isot. 134, 269 (2018)

    Article  Google Scholar 

  52. M. Jiránek, V. Kačmaříková, J. Environ. Radioact. 208–209, 106019 (2019)

    Article  Google Scholar 

  53. S. Georgiev, K. Mitev, C. Dutsov, T. Boshkova, I. Dimitrova, Int. J. Environ. Res. Public Health 16(22), 4523 (2019)

    Article  Google Scholar 

  54. K. Mitev, C. Dutsov, S. Georgiev, L. Tsankov, T. Boshkova, IEEE Trans. Nucl. Sci. 64(6), 1592 (2017)

    ADS  Google Scholar 

  55. E. Pelay, A. Tarancón, K. Mitev, C. Dutsov, S. Georgiev, L. Tsankov, J.F. García, J. Radioanal. Nucl. Chem. 314(2), 637 (2017)

    Article  Google Scholar 

  56. R. Merín, A. Tarancón, K. Mitev, S. Georgiev, C. Dutsov, H. Bagán, J.F. García, J. Radioanal. Nucl. Chem. 319(1), 135 (2019)

    Article  Google Scholar 

  57. H. Möre, L.M. Hubbard, Radiat. Prot. Dosim. 74(1–2), 85 (1997)

    Article  Google Scholar 

  58. D.S. Pressyanov, K.K. Mitev, V.H. Stefanov, Nucl. Instr. Methods A 527(3), 657 (2004)

    Article  ADS  Google Scholar 

  59. K. Mitev, D. Pressyanov, I. Dimitrova, S. Georgiev, T. Boshkova, V. Zhivkova, Nucl. Instr. Methods A 603(3), 491 (2009)

    Article  ADS  Google Scholar 

  60. D. Pressyanov, I. Dimitrova, S. Georgiev, E. Hristova, K. Mitev, Nucl. Instr. Methods A 574(1), 202 (2007)

    Article  ADS  Google Scholar 

  61. K. Mitev, S. Georgiev, I. Dimitrova, D. Pressyanov, Radiat. Meas. 92, 32 (2016)

    Article  Google Scholar 

  62. S. Georgiev, K. Mitev, D. Pressyanov, I. Dimitrova, T. Boshkova, Radiat. Meas. 47(4), 303 (2012)

    Article  Google Scholar 

  63. I. Dimitrova, K. Mitev, D. Pressyanov, S. Georgiev, T. Boshkova, Radiat. Meas. 46(1), 119 (2011)

    Article  Google Scholar 

  64. K. Mitev, S. Georgiev, D. Pressyanov, I. Dimitrova, V. Zhivkova, T. Boshkova, Radiat. Prot. Dosim. 160(1–3), 188 (2014)

    Article  Google Scholar 

  65. K. Mitev, I. Dimitrova, V. Zhivkova, S. Georgiev, G. Gerganov, D. Pressyanov, T. Boshkova, Nucl. Instr. Methods A 677, 31 (2012)

    Article  ADS  Google Scholar 

  66. K. Mitev, V. Zhivkova, D. Pressyanov, S. Georgiev, I. Dimitrova, G. Gerganov, T. Boshkova, Appl. Radiat. Isot. 93, 87 (2014)

    Article  Google Scholar 

  67. D. Pressyanov, I. Dimitrova, K. Mitev, S. Georgiev, Handbook of Radon: Properties, Applications, And Health (Chemistry Research And Applications), ed. by C. Feng, Z. Li (Nova Science Publishers Inc., New York, 2012) pp. 101–129

    Google Scholar 

  68. R.W. Baker, B.T. Low, Macromolecules 47(20), 6999 (2014)

    Article  ADS  Google Scholar 

  69. O.V. Malykh, A.Y. Golub, V.V. Teplyakov, Adv. Colloid Interface Sci. 164(1–2), 89 (2011)

    Article  Google Scholar 

  70. E.M. Renkin, J. Gen. Physiol. 38(2), 225 (1954)

    Google Scholar 

  71. A.S. Michaels, W.R. Vieth, J.A. Barrie, J. Appl. Phys. 34(1), 1 (1963)

    Article  ADS  Google Scholar 

  72. A.S. Michaels, W.R. Vieth, J.A. Barrie, J. Appl. Phys. 34(1), 13 (1963)

    Article  ADS  Google Scholar 

  73. W.R. Vieth, J.M. Howell, J.H. Hsieh, J. Membr. Sci. 1, 177 (1976)

    Article  Google Scholar 

  74. C.M. Laot, E. Marand, B. Schmittmann, R.K.P. Zia, Macromolecules 36(23), 8673 (2003)

    Article  ADS  Google Scholar 

  75. R.P. White, J.E.G. Lipson, Macromolecules 49(11), 3987 (2016)

    Article  ADS  Google Scholar 

  76. S. Putta, S. Nemat-Nasser, Mater. Sci. Eng. A 317(1–2), 70 (2001)

    Article  Google Scholar 

  77. C.-C. Hu, C.-S. Chang, R.-C. Ruaan, J.-Y. Lai, J. Membr. Sci. 226(1–2), 51 (2003)

    Article  Google Scholar 

  78. M.H. Cohen, D. Turnbull, J. Chem. Phys. 31(5), 1164 (1959)

    Article  ADS  Google Scholar 

  79. J.Y. Park, D.R. Paul, J. Membr. Sci. 125(1), 23 (1997)

    Article  Google Scholar 

  80. J. Vogt, S. Alvarez, Inorg. Chem. 53(17), 9260 (2014)

    Article  Google Scholar 

  81. C.M. Laot, Dissertation, Virginia Polytechnic Institute and State University (2001)

    Google Scholar 

  82. M. Minelli, F. Doghieri, Fluid Phase Equilib. 381, 1 (2014)

    Article  Google Scholar 

  83. M. Minelli, F. Doghieri, Fluid Phase Equilib. 444, 47 (2017)

    Article  Google Scholar 

  84. F.D. Brooks, R.W. Pringle, B.L. Funt, I.R.E. Trans, Nucl. Sci. 7(2–3), 35 (1960)

    Google Scholar 

  85. J.B. Birks, The Theory and Practice of Scintillation Counting (Elsevier, 1964)

    Google Scholar 

  86. M.F. L’Annunziata (ed.), Handbook of Radioactivity Analysis, 4th edn. (Academic Press, 2020)

    Google Scholar 

  87. G.H.V. Bertrand, M. Hamel, S. Normand, F. Sguerra, Nucl. Instr. Methods A 776, 114 (2015)

    Article  ADS  Google Scholar 

  88. ORDELA, Perals® Spectrometer Instruction Manual. ORDELA Model 8100AB-HV (1998)

    Google Scholar 

  89. labZY. https://www.labzy.com/products/nanopsd/. Accessed 29.11.2020

  90. E. García-Toraño, Appl. Radiat. Isot. 64(10–11), 1273 (2006)

    Article  Google Scholar 

  91. A. L’Hoir, Nucl. Instr. Methods 223(2–3), 336 (1984)

    Article  Google Scholar 

  92. G. Bortels, P. Collaers, Int. J. Appl. Radiat. Isot. Part A 38(10), 831 (1987)

    Article  Google Scholar 

  93. S. Ihantola, A. Pelikan, R. Pöllänen, H. Toivonen, Nucl. Instr. Methods A 656(1), 55 (2011)

    Article  ADS  Google Scholar 

  94. S. Pommé, G. Sibbens, Acta Chim. Slov. 55(1), 111 (2008)

    Google Scholar 

  95. S. Pommé, B. Caro Marroyo, Appl. Radiat. Isot. 96, 148 (2015)

    Google Scholar 

  96. S. Kolev, Annual of Sofia University St. Kliment Ohridski. Fac. Phys. 110, 121 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krasimir Mitev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitev, K., Cassette, P. (2021). Radioactive Noble Gas Detection and Measurement with Plastic Scintillators. In: Hamel, M. (eds) Plastic Scintillators. Topics in Applied Physics, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-030-73488-6_11

Download citation

Publish with us

Policies and ethics