Skip to main content

The Adrenergic Nerve Network in Cancer

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1329))

Abstract

The central and autonomic nervous systems interact and converge to build up an adrenergic nerve network capable of promoting cancer. While a local adrenergic sympathetic innervation in peripheral solid tumors influences cancer and stromal cell behavior, the brain can participate to the development of cancer through an intermixed dysregulation of the sympathoadrenal system, adrenergic neurons, and the hypothalamo-pituitary-adrenal axis. A deeper understanding of the adrenergic nerve circuitry within the brain and tumors and its interactions with the microenvironment should enable elucidation of original mechanisms of cancer and novel therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rich AR (2007) On the frequency of occurrence of occult carcinoma of the prostrate. 1934. Int J Epidemiol 36:274–277. https://doi.org/10.1093/ije/dym050

    Article  PubMed  Google Scholar 

  2. Sakr WA, Haas GP, Cassin BF, Pontes JE, Crissman JD (1993) The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients. J Urol 150:379–385. https://doi.org/10.1016/s0022-5347(17)35487-3

    Article  CAS  PubMed  Google Scholar 

  3. Nielsen M, Thomsen JL, Primdahl S, Dyreborg U, Andersen JA (1987) Breast cancer and atypia among young and middle-aged women: a study of 110 medicolegal autopsies. Br J Cancer 56:814–819. https://doi.org/10.1038/bjc.1987.296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bissell MJ, Hines WC (2011) Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17:320–329. https://doi.org/10.1038/nm.2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Binnewies M et al (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24:541–550. https://doi.org/10.1038/s41591-018-0014-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–322. https://doi.org/10.1016/j.ccr.2012.02.022

    Article  CAS  PubMed  Google Scholar 

  7. Grothey A, Galanis E (2009) Targeting angiogenesis: progress with anti-VEGF treatment with large molecules. Nat Rev Clin Oncol 6:507–518. https://doi.org/10.1038/nrclinonc.2009.110

    Article  CAS  PubMed  Google Scholar 

  8. Ferrara N et al (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442

    Article  CAS  PubMed  Google Scholar 

  9. Paez-Ribes M et al (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ebos JM et al (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Van der Veldt AA et al (2012) Rapid decrease in delivery of chemotherapy to tumors after anti-VEGF therapy: implications for scheduling of anti-angiogenic drugs. Cancer Cell 21:82–91. https://doi.org/10.1016/j.ccr.2011.11.023

    Article  CAS  PubMed  Google Scholar 

  12. Conley SJ et al (2012) Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci U S A 109:2784–2789. https://doi.org/10.1073/pnas.1018866109

    Article  PubMed  PubMed Central  Google Scholar 

  13. Krummel MF, Allison JP (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182:459–465

    Article  CAS  PubMed  Google Scholar 

  14. Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–1736

    Article  CAS  PubMed  Google Scholar 

  15. Ishida Y, Agata Y, Shibahara K, Honjo T (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11:3887–3895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dong H, Zhu G, Tamada K, Chen L (1999) B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5:1365–1369. https://doi.org/10.1038/70932

    Article  CAS  PubMed  Google Scholar 

  17. Freeman GJ et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T (2013) A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol 14:1212–1218. https://doi.org/10.1038/ni.2762

    Article  CAS  PubMed  Google Scholar 

  19. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell 168:707–723. https://doi.org/10.1016/j.cell.2017.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schoenfeld AJ, Hellmann MD (2020) Acquired Resistance to Immune Checkpoint Inhibitors. Cancer Cell 37:443–455. https://doi.org/10.1016/j.ccell.2020.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marusyk A, Janiszewska M, Polyak K (2020) Intratumor Heterogeneity: The Rosetta Stone of Therapy Resistance. Cancer Cell 37:471–484. https://doi.org/10.1016/j.ccell.2020.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Magnon C et al (2013) Autonomic nerve development contributes to prostate cancer progression. Science 341:1236361. https://doi.org/10.1126/science.1236361

    Article  PubMed  Google Scholar 

  23. Dobrenis K, Gauthier LR, Barroca V, Magnon C (2015) Granulocyte colony-stimulating factor off-target effect on nerve outgrowth promotes prostate cancer development. Int J Cancer 136:982–988. https://doi.org/10.1002/ijc.29046

    Article  CAS  PubMed  Google Scholar 

  24. Boilly B, Faulkner S, Jobling P, Hondermarck H (2017) Nerve Dependence: From Regeneration to Cancer. Cancer Cell 31:342–354. https://doi.org/10.1016/j.ccell.2017.02.005

    Article  CAS  PubMed  Google Scholar 

  25. Hayakawa Y et al (2017) Nerve Growth Factor Promotes Gastric Tumorigenesis through Aberrant Cholinergic Signaling. Cancer Cell 31:21–34. https://doi.org/10.1016/j.ccell.2016.11.005

    Article  CAS  PubMed  Google Scholar 

  26. Zhao CM et al (2014) Denervation suppresses gastric tumorigenesis. Sci Transl Med 6:250ra115. https://doi.org/10.1126/scitranslmed.3009569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pundavela J et al (2015) Nerve fibers infiltrate the tumor microenvironment and are associated with nerve growth factor production and lymph node invasion in breast cancer. Mol Oncol 9:1626–1635. https://doi.org/10.1016/j.molonc.2015.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peterson SC et al (2015) Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell 16:400–412. https://doi.org/10.1016/j.stem.2015.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stopczynski RE et al (2014) Neuroplastic changes occur early in the development of pancreatic ductal adenocarcinoma. Cancer Res 74:1718–1727. https://doi.org/10.1158/0008-5472.CAN-13-2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saloman JL et al (2016) Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc Natl Acad Sci U S A 113:3078–3083. https://doi.org/10.1073/pnas.1512603113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liebl F et al (2013) The severity of neural invasion is associated with shortened survival in colon cancer. Clin Cancer Res 19:50–61. https://doi.org/10.1158/1078-0432.CCR-12-2392

    Article  CAS  PubMed  Google Scholar 

  32. Gibbins I (2013) Functional organization of autonomic neural pathways. Organogenesis 9:169–175. https://doi.org/10.4161/org.25126

    Article  PubMed  PubMed Central  Google Scholar 

  33. Goldstein DS (2010) Adrenal responses to stress. Cell Mol Neurobiol 30:1433–1440. https://doi.org/10.1007/s10571-010-9606-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ernsberger U, Rohrer H (2018) Sympathetic tales: subdivisons of the autonomic nervous system and the impact of developmental studies. Neural Dev 13:20. https://doi.org/10.1186/s13064-018-0117-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jansen AS, Nguyen XV, Karpitskiy V, Mettenleiter TC, Loewy AD (1995) Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science 270:644–646. https://doi.org/10.1126/science.270.5236.644

    Article  CAS  PubMed  Google Scholar 

  36. Thaker PH et al (2006) Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 12:939–944. https://doi.org/10.1038/nm1447

    Article  CAS  PubMed  Google Scholar 

  37. Sloan EK et al (2010) The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res 70:7042–7052. https://doi.org/10.1158/0008-5472.CAN-10-0522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cohen S, Levi-Montalcini R, Hamburger V (1954) A Nerve Growth-Stimulating Factor Isolated from Sarcom as 37 and 180. Proc Natl Acad Sci U S A 40:1014–1018. https://doi.org/10.1073/pnas.40.10.1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Levi-Montalcini R, Meyer H, Hamburger V (1954) In vitro experiments on the effects of mouse sarcomas 180 and 37 on the spinal and sympathetic ganglia of the chick embryo. Cancer Res 14:49–57

    CAS  PubMed  Google Scholar 

  40. Barnbrook DH (1953) Pheochromocytoma; an alternative surgical approach. Can Med Assoc J 68:245–247

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Scharrer B (1949) Gastric cancer experimentally induced in insects by nerve severance. J Natl Cancer Inst 10:375; Disc, 399–403

    CAS  PubMed  Google Scholar 

  42. Batkin S, Piette LH, Wildman E (1970) Effect of muscle denervation on growth of transplanted tumor in mice. Proc Natl Acad Sci U S A 67:1521–1527. https://doi.org/10.1073/pnas.67.3.1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. De Sousa Pereira A (1946) A basis for sympathectomy for cancer of the cervix uteri. Arch Surg 52:260–285. https://doi.org/10.1001/archsurg.1946.01230050265003

    Article  Google Scholar 

  44. Reiche EM, Nunes SO, Morimoto HK (2004) Stress, depression, the immune system, and cancer. Lancet Oncol 5:617–625. https://doi.org/10.1016/S1470-2045(04)01597-9

    Article  CAS  PubMed  Google Scholar 

  45. Riley V (1975) Mouse mammary tumors: alteration of incidence as apparent function of stress. Science 189:465–467. https://doi.org/10.1126/science.168638

    Article  CAS  PubMed  Google Scholar 

  46. Liebig C, Ayala G, Wilks JA, Berger DH, Albo D (2009) Perineural invasion in cancer: a review of the literature. Cancer 115:3379–3391. https://doi.org/10.1002/cncr.24396

    Article  CAS  PubMed  Google Scholar 

  47. Amit M, Na’ara S, Gil Z (2016) Mechanisms of cancer dissemination along nerves. Nat Rev Cancer 16:399–408. https://doi.org/10.1038/nrc.2016.38

    Article  CAS  PubMed  Google Scholar 

  48. Carter RL, Foster CS, Dinsdale EA, Pittam MR (1983) Perineural spread by squamous carcinomas of the head and neck: a morphological study using antiaxonal and antimyelin monoclonal antibodies. J Clin Pathol 36:269–275. https://doi.org/10.1136/jcp.36.3.269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Soo KC et al (1986) Prognostic implications of perineural spread in squamous carcinomas of the head and neck. Laryngoscope 96:1145–1148. https://doi.org/10.1288/00005537-198610000-00015

    Article  CAS  PubMed  Google Scholar 

  50. Anderson PR, Hanlon AL, Patchefsky A, Al-Saleem T, Hanks GE (1998) Perineural invasion and Gleason 7-10 tumors predict increased failure in prostate cancer patients with pretreatment PSA <10 ng/ml treated with conformal external beam radiation therapy. Int J Radiat Oncol Biol Phys 41:1087–1092

    Article  CAS  PubMed  Google Scholar 

  51. Ayala GE et al (2001) In vitro dorsal root ganglia and human prostate cell line interaction: redefining perineural invasion in prostate cancer. Prostate 49:213–223. https://doi.org/10.1002/pros.1137

    Article  CAS  PubMed  Google Scholar 

  52. Isaacs J, Cancer T (2013) Prostate cancer takes nerve. Science 341:134–135. https://doi.org/10.1126/science.1241776

    Article  CAS  PubMed  Google Scholar 

  53. Ayala GE et al (2008) Cancer-related axonogenesis and neurogenesis in prostate cancer. Clin Cancer Res 14:7593–7603

    Article  CAS  PubMed  Google Scholar 

  54. Cryer PE (1980) Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. N Engl J Med 303:436–444. https://doi.org/10.1056/NEJM198008213030806

    Article  CAS  PubMed  Google Scholar 

  55. Kvetnansky R et al (1995) Sympathoadrenal system in stress. Interaction with the hypothalamic-pituitary-adrenocortical system. Ann N Y Acad Sci 771:131–158. https://doi.org/10.1111/j.1749-6632.1995.tb44676.x

    Article  CAS  PubMed  Google Scholar 

  56. Ehrhart-Bornstein M, Bornstein SR (2008) Cross-talk between adrenal medulla and adrenal cortex in stress. Ann N Y Acad Sci 1148:112–117. https://doi.org/10.1196/annals.1410.053

    Article  PubMed  Google Scholar 

  57. Zuckerman-Levin N, Tiosano D, Eisenhofer G, Bornstein S, Hochberg Z (2001) The importance of adrenocortical glucocorticoids for adrenomedullary and physiological response to stress: a study in isolated glucocorticoid deficiency. J Clin Endocrinol Metab 86:5920–5924. https://doi.org/10.1210/jcem.86.12.8106

    Article  CAS  PubMed  Google Scholar 

  58. Kvetnansky R et al (2006) Gene expression of phenylethanolamine N-methyltransferase in corticotropin-releasing hormone knockout mice during stress exposure. Cell Mol Neurobiol 26:735–754. https://doi.org/10.1007/s10571-006-9063-7

    Article  CAS  PubMed  Google Scholar 

  59. Yoshida-Hiroi M et al (2002) Chromaffin cell function and structure is impaired in corticotropin-releasing hormone receptor type 1-null mice. Mol Psychiatry 7:967–974. https://doi.org/10.1038/sj.mp.4001143

    Article  CAS  PubMed  Google Scholar 

  60. Herman JP et al (2016) Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. Compr Physiol 6:603–621. https://doi.org/10.1002/cphy.c150015

    Article  PubMed  PubMed Central  Google Scholar 

  61. Brown MR, Fisher LA (1986) Glucocorticoid suppression of the sympathetic nervous system and adrenal medulla. Life Sci 39:1003–1012. https://doi.org/10.1016/0024-3205(86)90289-4

    Article  CAS  PubMed  Google Scholar 

  62. Munck A, Guyre PM, Holbrook NJ (1984) Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr Rev 5:25–44. https://doi.org/10.1210/edrv-5-1-25

    Article  CAS  PubMed  Google Scholar 

  63. Munck A, Naray-Fejes-Toth A (1992) The ups and downs of glucocorticoid physiology. Permissive and suppressive effects revisited. Mol Cell Endocrinol 90:C1–C4. https://doi.org/10.1016/0303-7207(92)90091-j

    Article  CAS  PubMed  Google Scholar 

  64. Hassan S et al (2013) Behavioral stress accelerates prostate cancer development in mice. J Clin Invest 123:874–886. https://doi.org/10.1172/JCI63324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Madden KS, Szpunar MJ, Brown EB (2011) beta-Adrenergic receptors (beta-AR) regulate VEGF and IL-6 production by divergent pathways in high beta-AR-expressing breast cancer cell lines. Breast Cancer Res Treat 130:747–758. https://doi.org/10.1007/s10549-011-1348-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Eng JW et al (2015) Housing temperature-induced stress drives therapeutic resistance in murine tumour models through beta2-adrenergic receptor activation. Nat Commun 6:6426. https://doi.org/10.1038/ncomms7426

    Article  CAS  PubMed  Google Scholar 

  67. Kim-Fuchs C et al (2014) Chronic stress accelerates pancreatic cancer growth and invasion: a critical role for beta-adrenergic signaling in the pancreatic microenvironment. Brain Behav Immun 40:40–47. https://doi.org/10.1016/j.bbi.2014.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hasegawa H, Saiki I (2002) Psychosocial stress augments tumor development through beta-adrenergic activation in mice. Jpn J Cancer Res 93:729–735. https://doi.org/10.1111/j.1349-7006.2002.tb01313.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Goldfarb Y et al (2011) Improving postoperative immune status and resistance to cancer metastasis: a combined perioperative approach of immunostimulation and prevention of excessive surgical stress responses. Ann Surg 253:798–810. https://doi.org/10.1097/SLA.0b013e318211d7b5

    Article  PubMed  Google Scholar 

  70. Pasquier E et al (2013) beta-blockers increase response to chemotherapy via direct antitumour and anti-angiogenic mechanisms in neuroblastoma. Br J Cancer 108:2485–2494. https://doi.org/10.1038/bjc.2013.205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wolter JK et al (2014) Anti-tumor activity of the beta-adrenergic receptor antagonist propranolol in neuroblastoma. Oncotarget 5:161–172. https://doi.org/10.18632/oncotarget.1083

    Article  PubMed  Google Scholar 

  72. Lutgendorf SK et al (2011) Social isolation is associated with elevated tumor norepinephrine in ovarian carcinoma patients. Brain Behav Immun 25:250–255. https://doi.org/10.1016/j.bbi.2010.10.012

    Article  CAS  PubMed  Google Scholar 

  73. Campbell JP et al (2012) Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice. PLoS Biol 10:e1001363. https://doi.org/10.1371/journal.pbio.1001363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Buckingham JC (1996) Fifteenth Gaddum Memorial Lecture December 1994. Stress and the neuroendocrine-immune axis: the pivotal role of glucocorticoids and lipocortin 1. Br J Pharmacol 118:1–19. https://doi.org/10.1111/j.1476-5381.1996.tb15360.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Obradovic MMS et al (2019) Glucocorticoids promote breast cancer metastasis. Nature 567:540–544. https://doi.org/10.1038/s41586-019-1019-4

    Article  CAS  PubMed  Google Scholar 

  76. Mohammadpour H et al (2019) beta2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells. J Clin Invest 129:5537–5552. https://doi.org/10.1172/JCI129502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ayala GE et al (2004) Growth and survival mechanisms associated with perineural invasion in prostate cancer. Cancer Res 64:6082–6090. https://doi.org/10.1158/0008-5472.CAN-04-0838

    Article  CAS  PubMed  Google Scholar 

  78. Kobayashi T, Kihara K, Hyochi N, Masuda H, Sato K (2003) Spontaneous regeneration of the seriously injured sympathetic pathway projecting to the prostate over a long period in the dog. BJU Int 91:868–872

    Article  CAS  PubMed  Google Scholar 

  79. Frisbie JH, Binard J (1994) Low prevalence of prostatic cancer among myelopathy patients. J Am Paraplegia Soc 17:148–149. https://doi.org/10.1080/01952307.1994.11735926

    Article  CAS  PubMed  Google Scholar 

  80. Rutledge A, Jobling P, Walker MM, Denham JW, Hondermarck H (2017) Spinal cord injuries and nerve dependence in prostate cancer. Trends Cancer 3:812–815. https://doi.org/10.1016/j.trecan.2017.10.001

    Article  PubMed  Google Scholar 

  81. You H et al (2020) Sight and switch off: nerve density visualization for interventions targeting nerves in prostate cancer. Sci Adv 6:eaax6040. https://doi.org/10.1126/sciadv.aax6040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Renz BW et al (2018) beta2 adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell 34:863–867. https://doi.org/10.1016/j.ccell.2018.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Allen JK et al (2018) Sustained adrenergic signaling promotes intratumoral innervation through BDNF induction. Cancer Res 78:3233–3242. https://doi.org/10.1158/0008-5472.CAN-16-1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Madeo M et al (2018) Cancer exosomes induce tumor innervation. Nat Commun 9:4284. https://doi.org/10.1038/s41467-018-06640-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kamiya A et al (2019) Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression. Nat Neurosci 22:1289–1305. https://doi.org/10.1038/s41593-019-0430-3

    Article  CAS  PubMed  Google Scholar 

  86. Mauffrey P et al (2019) Progenitors from the central nervous system drive neurogenesis in cancer. Nature 569:672–678. https://doi.org/10.1038/s41586-019-1219-y

    Article  CAS  PubMed  Google Scholar 

  87. Alhayek S, Preuss CV (2020) In StatPearls

    Google Scholar 

  88. Frielle T et al (1987) Cloning of the cDNA for the human beta 1-adrenergic receptor. Proc Natl Acad Sci U S A 84:7920–7924. https://doi.org/10.1073/pnas.84.22.7920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. McGraw DW, Liggett SB (2005) Molecular mechanisms of beta2-adrenergic receptor function and regulation. Proc Am Thorac Soc 2:292–296; discussion 311–292. https://doi.org/10.1513/pats.200504-027SR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kobilka BK et al (1987) cDNA for the human beta 2-adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc Natl Acad Sci U S A 84:46–50. https://doi.org/10.1073/pnas.84.1.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Emorine LJ et al (1989) Molecular characterization of the human beta 3-adrenergic receptor. Science 245:1118–1121. https://doi.org/10.1126/science.2570461

    Article  CAS  PubMed  Google Scholar 

  92. Ahlquist RP (1948) A study of the adrenotropic receptors. Am J Phys 153:586–600. https://doi.org/10.1152/ajplegacy.1948.153.3.586

    Article  CAS  Google Scholar 

  93. Bylund DB (2007) Alpha- and beta-adrenergic receptors: Ahlquist’s landmark hypothesis of a single mediator with two receptors. Am J Physiol Endocrinol Metab 293:E1479–E1481. https://doi.org/10.1152/ajpendo.00664.2007

    Article  CAS  PubMed  Google Scholar 

  94. Sood AK et al (2010) Adrenergic modulation of focal adhesion kinase protects human ovarian cancer cells from anoikis. J Clin Invest 120:1515–1523. https://doi.org/10.1172/JCI40802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Watkins JL et al (2015) Clinical impact of selective and nonselective beta-blockers on survival in patients with ovarian cancer. Cancer 121:3444–3451. https://doi.org/10.1002/cncr.29392

    Article  CAS  PubMed  Google Scholar 

  96. Lang K et al (2004) Induction of a metastatogenic tumor cell type by neurotransmitters and its pharmacological inhibition by established drugs. Int J Cancer 112:231–238. https://doi.org/10.1002/ijc.20410

    Article  CAS  PubMed  Google Scholar 

  97. Choy C et al (2016) Inhibition of beta2-adrenergic receptor reduces triple-negative breast cancer brain metastases: The potential benefit of perioperative beta-blockade. Oncol Rep 35:3135–3142. https://doi.org/10.3892/or.2016.4710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Montoya A et al (2017) Use of non-selective beta-blockers is associated with decreased tumor proliferative indices in early stage breast cancer. Oncotarget 8:6446–6460. https://doi.org/10.18632/oncotarget.14119

    Article  PubMed  Google Scholar 

  99. Sastry KS et al (2007) Epinephrine protects cancer cells from apoptosis via activation of cAMP-dependent protein kinase and BAD phosphorylation. J Biol Chem 282:14094–14100. https://doi.org/10.1074/jbc.M611370200

    Article  CAS  PubMed  Google Scholar 

  100. Guo K et al (2009) Norepinephrine-induced invasion by pancreatic cancer cells is inhibited by propranolol. Oncol Rep 22:825–830. https://doi.org/10.3892/or_00000505

    Article  CAS  PubMed  Google Scholar 

  101. Zhang D, Ma QY (2010) Hu, H. T. & Zhang, M. beta2-adrenergic antagonists suppress pancreatic cancer cell invasion by inhibiting CREB, NFkappaB and AP-1. Cancer Biol Ther 10:19–29. https://doi.org/10.4161/cbt.10.1.11944

    Article  CAS  PubMed  Google Scholar 

  102. Al-Wadei HA et al (2012) Social stress promotes and gamma-aminobutyric acid inhibits tumor growth in mouse models of non-small cell lung cancer. Cancer Prev Res (Phila) 5:189–196. https://doi.org/10.1158/1940-6207.CAPR-11-0177

    Article  CAS  Google Scholar 

  103. Park PG, Merryman J, Orloff M, Schuller HM (1995) Beta-adrenergic mitogenic signal transduction in peripheral lung adenocarcinoma: implications for individuals with preexisting chronic lung disease. Cancer Res 55:3504–3508

    CAS  PubMed  Google Scholar 

  104. Wong HP et al (2011) Effects of adrenaline in human colon adenocarcinoma HT-29 cells. Life Sci 88:1108–1112. https://doi.org/10.1016/j.lfs.2011.04.007

    Article  CAS  PubMed  Google Scholar 

  105. Moretti S et al (2013) beta-adrenoceptors are upregulated in human melanoma and their activation releases pro-tumorigenic cytokines and metalloproteases in melanoma cell lines. Lab Investig 93:279–290. https://doi.org/10.1038/labinvest.2012.175

    Article  CAS  PubMed  Google Scholar 

  106. Sardi I et al (2013) Expression of beta-adrenergic receptors in pediatric malignant brain tumors. Oncol Lett 5:221–225. https://doi.org/10.3892/ol.2012.989

    Article  PubMed  Google Scholar 

  107. Whitsett JA, Burdsall J, Workman L (1983) Hollinger, B. & Neely, J. beta-Adrenergic receptors in pediatric tumors: uncoupled beta 1-adrenergic receptor in Ewing’s sarcoma. J Natl Cancer Inst 71:779–786

    CAS  PubMed  Google Scholar 

  108. Calvani M et al (2015) Norepinephrine promotes tumor microenvironment reactivity through beta3-adrenoreceptors during melanoma progression. Oncotarget 6:4615–4632. https://doi.org/10.18632/oncotarget.2652

    Article  PubMed  Google Scholar 

  109. Perrone MG, Notarnicola M, Caruso MG, Tutino V, Scilimati A (2008) Upregulation of beta3-adrenergic receptor mRNA in human colon cancer: a preliminary study. Oncology 75:224–229. https://doi.org/10.1159/000163851

    Article  CAS  PubMed  Google Scholar 

  110. Chisholm KM et al (2012) beta-Adrenergic receptor expression in vascular tumors. Mod Pathol 25:1446–1451. https://doi.org/10.1038/modpathol.2012.108

    Article  CAS  PubMed  Google Scholar 

  111. Zhang D et al (2016) Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer. Nat Commun 7:10798. https://doi.org/10.1038/ncomms10798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hara MR, Sachs BD, Caron MG, Lefkowitz RJ (2013) Pharmacological blockade of a beta(2)AR-beta-arrestin-1 signaling cascade prevents the accumulation of DNA damage in a behavioral stress model. Cell Cycle 12:219–224. https://doi.org/10.4161/cc.23368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hara MR et al (2011) A stress response pathway regulates DNA damage through beta2-adrenoreceptors and beta-arrestin-1. Nature 477:349–353. https://doi.org/10.1038/nature10368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Reeder A et al (2015) Stress hormones reduce the efficacy of paclitaxel in triple negative breast cancer through induction of DNA damage. Br J Cancer 112:1461–1470. https://doi.org/10.1038/bjc.2015.133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Armaiz-Pena GN et al (2013) Src activation by beta-adrenoreceptors is a key switch for tumour metastasis. Nat Commun 4:1403. https://doi.org/10.1038/ncomms2413

    Article  CAS  PubMed  Google Scholar 

  116. Shi M et al (2011) The beta2-adrenergic receptor and Her2 comprise a positive feedback loop in human breast cancer cells. Breast Cancer Res Treat 125:351–362. https://doi.org/10.1007/s10549-010-0822-2

    Article  CAS  PubMed  Google Scholar 

  117. Chang M et al (2005) beta-Adrenoreceptors reactivate Kaposi’s sarcoma-associated herpesvirus lytic replication via PKA-dependent control of viral RTA. J Virol 79:13538–13547. https://doi.org/10.1128/JVI.79.21.13538-13547.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Liu J et al (2015) The effect of chronic stress on anti-angiogenesis of sunitinib in colorectal cancer models. Psychoneuroendocrinology 52:130–142. https://doi.org/10.1016/j.psyneuen.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  119. Deng GH et al (2014) Exogenous norepinephrine attenuates the efficacy of sunitinib in a mouse cancer model. J Exp Clin Cancer Res 33:21. https://doi.org/10.1186/1756-9966-33-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wei WJ, Shen CT, Song HJ, Qiu ZL, Luo QY (2016) Propranolol sensitizes thyroid cancer cells to cytotoxic effect of vemurafenib. Oncol Rep 36:1576–1584. https://doi.org/10.3892/or.2016.4918

    Article  CAS  PubMed  Google Scholar 

  121. Pon CK, Lane JR, Sloan EK, Halls ML (2016) The beta2-adrenoceptor activates a positive cAMP-calcium feedforward loop to drive breast cancer cell invasion. FASEB J 30:1144–1154. https://doi.org/10.1096/fj.15-277798

    Article  CAS  PubMed  Google Scholar 

  122. Yoshioka Y, Kadoi H, Yamamuro A, Ishimaru Y, Maeda S (2016) Noradrenaline increases intracellular glutathione in human astrocytoma U-251 MG cells by inducing glutamate-cysteine ligase protein via beta3-adrenoceptor stimulation. Eur J Pharmacol 772:51–61. https://doi.org/10.1016/j.ejphar.2015.12.041

    Article  CAS  PubMed  Google Scholar 

  123. Huang XY, Wang HC, Yuan Z, Huang J, Zheng Q (2012) Norepinephrine stimulates pancreatic cancer cell proliferation, migration and invasion via beta-adrenergic receptor-dependent activation of P38/MAPK pathway. Hepato-Gastroenterology 59:889–893. https://doi.org/10.5754/hge11476

    Article  CAS  PubMed  Google Scholar 

  124. Lin X, Luo K, Lv Z, Huang J (2012) Beta-adrenoceptor action on pancreatic cancer cell proliferation and tumor growth in mice. Hepato-Gastroenterology 59:584–588. https://doi.org/10.5754/hge11271

    Article  CAS  PubMed  Google Scholar 

  125. Shan T et al (2011) beta2-adrenoceptor blocker synergizes with gemcitabine to inhibit the proliferation of pancreatic cancer cells via apoptosis induction. Eur J Pharmacol 665:1–7. https://doi.org/10.1016/j.ejphar.2011.04.055

    Article  CAS  PubMed  Google Scholar 

  126. Zhang D, Ma Q, Shen S, Hu H (2009) Inhibition of pancreatic cancer cell proliferation by propranolol occurs through apoptosis induction: the study of beta-adrenoceptor antagonist’s anticancer effect in pancreatic cancer cell. Pancreas 38:94–100. https://doi.org/10.1097/MPA.0b013e318184f50c

    Article  CAS  PubMed  Google Scholar 

  127. Zhang D et al (2011) beta2-adrenoceptor blockage induces G1/S phase arrest and apoptosis in pancreatic cancer cells via Ras/Akt/NFkappaB pathway. Mol Cancer 10:146. https://doi.org/10.1186/1476-4598-10-146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhou C et al (2016) Propranolol induced G0/G1/S phase arrest and apoptosis in melanoma cells via AKT/MAPK pathway. Oncotarget 7:68314–68327. https://doi.org/10.18632/oncotarget.11599

    Article  PubMed  PubMed Central  Google Scholar 

  129. Echtay KS et al (2002) Superoxide activates mitochondrial uncoupling proteins. Nature 415:96–99. https://doi.org/10.1038/415096a

    Article  CAS  PubMed  Google Scholar 

  130. Mailloux RJ, Harper ME (2011) Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic Biol Med 51:1106–1115. https://doi.org/10.1016/j.freeradbiomed.2011.06.022

    Article  CAS  PubMed  Google Scholar 

  131. Dal Monte M et al (2014) beta3-adrenergic receptor activity modulates melanoma cell proliferation and survival through nitric oxide signaling. Naunyn Schmiedeberg’s Arch Pharmacol 387:533–543. https://doi.org/10.1007/s00210-014-0969-1

    Article  CAS  Google Scholar 

  132. Bruno G et al (2020) beta3-adrenoreceptor blockade reduces tumor growth and increases neuronal differentiation in neuroblastoma via SK2/S1P2 modulation. Oncogene 39:368–384. https://doi.org/10.1038/s41388-019-0993-1

    Article  CAS  PubMed  Google Scholar 

  133. Veiga-Fernandes H, Mucida D (2016) Neuro-Immune Interactions at Barrier Surfaces. Cell 165:801–811. https://doi.org/10.1016/j.cell.2016.04.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Veiga-Fernandes H, Pachnis V (2017) Neuroimmune regulation during intestinal development and homeostasis. Nat Immunol 18:116–122. https://doi.org/10.1038/ni.3634

    Article  CAS  PubMed  Google Scholar 

  135. Pirzgalska RM et al (2017) Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat Med 23:1309–1318. https://doi.org/10.1038/nm.4422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Qiao G, Chen M, Bucsek MJ, Repasky EA, Hylander BL (2018) Adrenergic Signaling: A Targetable Checkpoint Limiting Development of the Antitumor Immune Response. Front Immunol 9:164. https://doi.org/10.3389/fimmu.2018.00164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Armaiz-Pena GN et al (2015) Adrenergic regulation of monocyte chemotactic protein 1 leads to enhanced macrophage recruitment and ovarian carcinoma growth. Oncotarget 6:4266–4273. https://doi.org/10.18632/oncotarget.2887

    Article  PubMed  Google Scholar 

  138. Zahalka AH et al (2017) Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 358:321–326. https://doi.org/10.1126/science.aah5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bucsek MJ et al (2017) beta-Adrenergic Signaling in Mice Housed at Standard Temperatures Suppresses an Effector Phenotype in CD8(+) T Cells and Undermines Checkpoint Inhibitor Therapy. Cancer Res 77:5639–5651. https://doi.org/10.1158/0008-5472.CAN-17-0546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jean Wrobel L et al (2016) Propranolol induces a favourable shift of anti-tumor immunity in a murine spontaneous model of melanoma. Oncotarget 7:77825–77837. https://doi.org/10.18632/oncotarget.12833

    Article  PubMed  Google Scholar 

  141. Calvani M et al (2019) beta3 -Adrenoceptor as a potential immuno-suppressor agent in melanoma. Br J Pharmacol 176:2509–2524. https://doi.org/10.1111/bph.14660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chen H et al (2018) Chronic psychological stress promotes lung metastatic colonization of circulating breast cancer cells by decorating a pre-metastatic niche through activating beta-adrenergic signaling. J Pathol 244:49–60. https://doi.org/10.1002/path.4988

    Article  CAS  PubMed  Google Scholar 

  143. Hollmen M, Zheng W, Pollard JW (2019) Editorial: Targeting Myeloid Cells to Fight Cancer. Front Immunol 10:2835. https://doi.org/10.3389/fimmu.2019.02835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cassetta L et al (2019) Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell 35:588–602 e510. https://doi.org/10.1016/j.ccell.2019.02.009

    Article  CAS  Google Scholar 

  145. Sorriento D, Trimarco B, Iaccarino G (2011) Adrenergic mechanism in the control of endothelial function. Transl Med UniSa 1:213–228

    PubMed  PubMed Central  Google Scholar 

  146. Filippi L et al (2015) Infantile hemangiomas, retinopathy of prematurity and cancer: a common pathogenetic role of the beta-adrenergic system. Med Res Rev 35:619–652. https://doi.org/10.1002/med.21336

    Article  CAS  PubMed  Google Scholar 

  147. Ciccarelli M et al (2011) Impaired neoangiogenesis in beta(2)-adrenoceptor gene-deficient mice: restoration by intravascular human beta(2)-adrenoceptor gene transfer and role of NFkappaB and CREB transcription factors. Br J Pharmacol 162:712–721. https://doi.org/10.1111/j.1476-5381.2010.01078.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hulsurkar M et al (2017) Beta-adrenergic signaling promotes tumor angiogenesis and prostate cancer progression through HDAC2-mediated suppression of thrombospondin-1. Oncogene 36:1525–1536. https://doi.org/10.1038/onc.2016.319

    Article  CAS  PubMed  Google Scholar 

  149. Iaccarino G et al (2005) Ischemic neoangiogenesis enhanced by beta2-adrenergic receptor overexpression: a novel role for the endothelial adrenergic system. Circ Res 97:1182–1189. https://doi.org/10.1161/01.RES.0000191541.06788.bb

    Article  CAS  PubMed  Google Scholar 

  150. Eelen G et al (2018) Endothelial Cell Metabolism. Physiol Rev 98:3–58. https://doi.org/10.1152/physrev.00001.2017

    Article  CAS  PubMed  Google Scholar 

  151. Morbidelli L et al (1996) Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium. Am J Phys 270:H411–H415. https://doi.org/10.1152/ajpheart.1996.270.1.H411

    Article  CAS  Google Scholar 

  152. Trochu JN et al (1999) Beta 3-adrenoceptor stimulation induces vasorelaxation mediated essentially by endothelium-derived nitric oxide in rat thoracic aorta. Br J Pharmacol 128:69–76. https://doi.org/10.1038/sj.bjp.0702797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ferro A et al (1999) Activation of nitric oxide synthase by beta 2-adrenoceptors in human umbilical vein endothelium in vitro. Br J Pharmacol 126:1872–1880. https://doi.org/10.1038/sj.bjp.0702512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chakroborty D, Sarkar C, Basu B, Dasgupta PS, Basu S (2009) Catecholamines regulate tumor angiogenesis. Cancer Res 69:3727–3730. https://doi.org/10.1158/0008-5472.CAN-08-4289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yang EV et al (2006) Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res 66:10357–10364. https://doi.org/10.1158/0008-5472.CAN-06-2496

    Article  CAS  PubMed  Google Scholar 

  156. Yang EV et al (2009) Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: implications for stress-related enhancement of tumor progression. Brain Behav Immun 23:267–275. https://doi.org/10.1016/j.bbi.2008.10.005

    Article  CAS  PubMed  Google Scholar 

  157. Park SY et al (2011) Norepinephrine induces VEGF expression and angiogenesis by a hypoxia-inducible factor-1alpha protein-dependent mechanism. Int J Cancer 128:2306–2316. https://doi.org/10.1002/ijc.25589

    Article  CAS  PubMed  Google Scholar 

  158. Wu W et al (2000) Social isolation stress augments angiogenesis induced by colon 26-L5 carcinoma cells in mice. Clin Exp Metastasis 18:1–10. https://doi.org/10.1023/a:1026548715669

    Article  CAS  PubMed  Google Scholar 

  159. Chen H et al (2014) Adrenergic signaling promotes angiogenesis through endothelial cell-tumor cell crosstalk. Endocr Relat Cancer 21:783–795. https://doi.org/10.1530/ERC-14-0236

    Article  CAS  PubMed  Google Scholar 

  160. Dal Monte M et al (2013) Functional involvement of beta3-adrenergic receptors in melanoma growth and vascularization. J Mol Med (Berl) 91:1407–1419. https://doi.org/10.1007/s00109-013-1073-6

    Article  CAS  Google Scholar 

  161. Pasquier E et al (2011) Propranolol potentiates the anti-angiogenic effects and anti-tumor efficacy of chemotherapy agents: implication in breast cancer treatment. Oncotarget 2:797–809. https://doi.org/10.18632/oncotarget.343

    Article  PubMed  PubMed Central  Google Scholar 

  162. Bachmann SB et al (2019) A distinct role of the autonomic nervous system in modulating the function of lymphatic vessels under physiological and tumor-draining conditions. Cell Rep 27:3305–3314 e3313. https://doi.org/10.1016/j.celrep.2019.05.050

    Article  CAS  Google Scholar 

  163. Panuncio AL, De La Pena S, Gualco G, Reissenweber N (1999) Adrenergic innervation in reactive human lymph nodes. J Anat 194(Pt 1):143–146. https://doi.org/10.1046/j.1469-7580.1999.19410143.x

    Article  PubMed  PubMed Central  Google Scholar 

  164. Raju B, Haug SR, Ibrahim SO, Heyeraas KJ (2007) Sympathectomy decreases size and invasiveness of tongue cancer in rats. Neuroscience 149:715–725. https://doi.org/10.1016/j.neuroscience.2007.07.048

    Article  CAS  PubMed  Google Scholar 

  165. Le CP et al (2016) Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nat Commun 7:10634. https://doi.org/10.1038/ncomms10634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Nwabo Kamdje AH et al (2017) Mesenchymal stromal cells’ role in tumor microenvironment: involvement of signaling pathways. Cancer Biol Med 14:129–141. https://doi.org/10.20892/j.issn.2095-3941.2016.0033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Nagaraja AS et al (2017) Adrenergic-mediated increases in INHBA drive CAF phenotype and collagens. JCI Insight 2. https://doi.org/10.1172/jci.insight.93076

  168. Henke E, Nandigama R, Ergun S (2019) Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci 6:160. https://doi.org/10.3389/fmolb.2019.00160

    Article  CAS  PubMed  Google Scholar 

  169. Sood AK et al (2006) Stress hormone-mediated invasion of ovarian cancer cells. Clinical Cancer Res 12:369–375. https://doi.org/10.1158/1078-0432.CCR-05-1698

    Article  CAS  Google Scholar 

  170. Gyamfi J, Eom M, Koo JS, Choi J (2018) Multifaceted Roles of Interleukin-6 in Adipocyte-Breast Cancer Cell Interaction. Transl Oncol 11:275–285. https://doi.org/10.1016/j.tranon.2017.12.009

    Article  PubMed  PubMed Central  Google Scholar 

  171. Russell ST, Hirai K, Tisdale MJ (2002) Role of beta3-adrenergic receptors in the action of a tumour lipid mobilizing factor. Br J Cancer 86:424–428. https://doi.org/10.1038/sj.bjc.6600086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Saxton SN, Withers SB, Heagerty AM (2019) Emerging roles of sympathetic nerves and inflammation in perivascular adipose tissue. Cardiovasc Drugs Ther 33:245–259. https://doi.org/10.1007/s10557-019-06862-4

    Article  PubMed  PubMed Central  Google Scholar 

  173. Petruzzelli M et al (2014) A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab 20:433–447. https://doi.org/10.1016/j.cmet.2014.06.011

    Article  CAS  PubMed  Google Scholar 

  174. Cao L et al (2010) Environmental and genetic activation of a brain-adipocyte BDNF/leptin axis causes cancer remission and inhibition. Cell 142:52–64. https://doi.org/10.1016/j.cell.2010.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lu YJ et al (2015) Isoprenaline induces epithelial-mesenchymal transition in gastric cancer cells. Mol Cell Biochem 408:1–13. https://doi.org/10.1007/s11010-015-2477-0

    Article  CAS  PubMed  Google Scholar 

  176. Shan T et al (2014) Novel regulatory program for norepinephrine-induced epithelial-mesenchymal transition in gastric adenocarcinoma cell lines. Cancer Sci 105:847–856. https://doi.org/10.1111/cas.12438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Pu J et al (2017) Adrenaline promotes epithelial-to-mesenchymal transition via HuR-TGFbeta regulatory axis in pancreatic cancer cells and the implication in cancer prognosis. Biochem Biophys Res Commun 493:1273–1279. https://doi.org/10.1016/j.bbrc.2017.09.146

    Article  CAS  PubMed  Google Scholar 

  178. Zhang J et al (2016) Norepinephrine induced epithelial-mesenchymal transition in HT-29 and A549 cells in vitro. J Cancer Res Clin Oncol 142:423–435. https://doi.org/10.1007/s00432-015-2044-9

    Article  CAS  PubMed  Google Scholar 

  179. Lutgendorf SK et al (2018) Biobehavioral modulation of the exosome transcriptome in ovarian carcinoma. Cancer 124:580–586. https://doi.org/10.1002/cncr.31078

    Article  CAS  PubMed  Google Scholar 

  180. Nagaraja AS, Sadaoui NC, Lutgendorf SK, Ramondetta LM, Sood AK (2013) beta-blockers: a new role in cancer chemotherapy? Expert Opin Investig Drugs 22:1359–1363. https://doi.org/10.1517/13543784.2013.825250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Weberpals J, Jansen L, Carr PR, Hoffmeister M, Brenner H (2016) Beta blockers and cancer prognosis – the role of immortal time bias: a systematic review and meta-analysis. Cancer Treat Rev 47:1–11. https://doi.org/10.1016/j.ctrv.2016.04.004

    Article  CAS  PubMed  Google Scholar 

  182. Grytli HH, Fagerland MW, Fossa SD, Tasken KA (2013) Association between use of beta-blockers and prostate cancer-specific survival: a cohort study of 3561 prostate cancer patients with high-risk or metastatic disease. Eur Urol. https://doi.org/10.1016/j.eururo.2013.01.007

  183. Grytli HH, Fagerland MW, Fossa SD, Tasken KA, Haheim LL (2013) Use of beta-blockers is associated with prostate cancer-specific survival in prostate cancer patients on androgen deprivation therapy. Prostate 73:250–260. https://doi.org/10.1002/pros.22564

    Article  CAS  PubMed  Google Scholar 

  184. Lemeshow S et al (2011) beta-blockers and survival among Danish patients with malignant melanoma: a population-based cohort study. Cancer Epidemiol Biomark Prev 20:2273–2279. https://doi.org/10.1158/1055-9965.EPI-11-0249

    Article  CAS  Google Scholar 

  185. Udumyan R et al (2017) Beta-blocker drug use and survival among patients with pancreatic adenocarcinoma. Cancer Res 77:3700–3707. https://doi.org/10.1158/0008-5472.CAN-17-0108

    Article  CAS  PubMed  Google Scholar 

  186. De Giorgi V et al (2011) Treatment with beta-blockers and reduced disease progression in patients with thick melanoma. Arch Intern Med 171:779–781. https://doi.org/10.1001/archinternmed.2011.131

    Article  PubMed  Google Scholar 

  187. Jansen L, Hoffmeister M, Arndt V, Chang-Claude J, Brenner H (2014) Stage-specific associations between beta blocker use and prognosis after colorectal cancer. Cancer 120:1178–1186. https://doi.org/10.1002/cncr.28546

    Article  PubMed  Google Scholar 

  188. Diaz ES, Karlan BY, Li AJ (2012) Impact of beta blockers on epithelial ovarian cancer survival. Gynecol Oncol 127:375–378. https://doi.org/10.1016/j.ygyno.2012.07.102

    Article  CAS  PubMed  Google Scholar 

  189. Wang HM et al (2013) Improved survival outcomes with the incidental use of beta-blockers among patients with non-small-cell lung cancer treated with definitive radiation therapy. Ann Oncol 24:1312–1319. https://doi.org/10.1093/annonc/mds616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kokolus KM et al (2018) Beta blocker use correlates with better overall survival in metastatic melanoma patients and improves the efficacy of immunotherapies in mice. Oncoimmunology 7:e1405205. https://doi.org/10.1080/2162402X.2017.1405205

    Article  PubMed  Google Scholar 

  191. Melhem-Bertrandt A et al (2011) Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer. J Clin Oncol Off J Am Soc Clin Oncol 29:2645–2652. https://doi.org/10.1200/JCO.2010.33.4441

    Article  CAS  Google Scholar 

  192. Powe DG, Entschladen F (2011) Targeted therapies: Using beta-blockers to inhibit breast cancer progression. Nat Rev Clin Oncol 8:511–512. https://doi.org/10.1038/nrclinonc.2011.123

    Article  PubMed  Google Scholar 

  193. Botteri E et al (2013) Therapeutic effect of beta-blockers in triple-negative breast cancer postmenopausal women. Breast Cancer Res Treat 140:567–575. https://doi.org/10.1007/s10549-013-2654-3

    Article  CAS  PubMed  Google Scholar 

  194. Barron TI, Connolly RM, Sharp L, Bennett K, Visvanathan K (2011) Beta blockers and breast cancer mortality: a population- based study. J Clin Oncol Off J Am Soc Clin Oncol 29:2635–2644. https://doi.org/10.1200/JCO.2010.33.5422

    Article  CAS  Google Scholar 

  195. Zahalka AH et al (2020) Use of beta-blocker types and risk of incident prostate cancer in a multiethnic population. Urol Oncol. https://doi.org/10.1016/j.urolonc.2020.03.024

  196. Frishman WH (2008) Fifty years of beta-adrenergic blockade: a golden era in clinical medicine and molecular pharmacology. Am J Med 121:933–934. https://doi.org/10.1016/j.amjmed.2008.06.025

    Article  PubMed  Google Scholar 

  197. Pantziarka P et al (2016) Repurposing Drugs in Oncology (ReDO)-Propranolol as an anti-cancer agent. Ecancermedicalscience 10:680. https://doi.org/10.3332/ecancer.2016.680

    Article  PubMed  PubMed Central  Google Scholar 

  198. Lin CS, Lin WS, Lin CL, Kao CH (2015) Carvedilol use is associated with reduced cancer risk: A nationwide population-based cohort study. Int J Cardiol 184:9–13. https://doi.org/10.1016/j.ijcard.2015.02.015

    Article  PubMed  Google Scholar 

  199. Horowitz M, Neeman E, Sharon E, Ben-Eliyahu S (2015) Exploiting the critical perioperative period to improve long-term cancer outcomes. Nat Rev Clin Oncol 12:213–226. https://doi.org/10.1038/nrclinonc.2014.224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Neeman E, Zmora O, Ben-Eliyahu S (2012) A new approach to reducing postsurgical cancer recurrence: perioperative targeting of catecholamines and prostaglandins. Clinical Cancer Res 18:4895–4902. https://doi.org/10.1158/1078-0432.CCR-12-1087

    Article  CAS  Google Scholar 

  201. Selye H (1975) Stress and distress. Compr Ther 1:9–13

    CAS  PubMed  Google Scholar 

  202. Engler H, Bailey MT, Engler A, Sheridan JF (2004) Effects of repeated social stress on leukocyte distribution in bone marrow, peripheral blood and spleen. J Neuroimmunol 148:106–115. https://doi.org/10.1016/j.jneuroim.2003.11.011

    Article  CAS  PubMed  Google Scholar 

  203. Engler H et al (2004) Effects of social stress on blood leukocyte distribution: the role of alpha- and beta-adrenergic mechanisms. J Neuroimmunol 156:153–162. https://doi.org/10.1016/j.jneuroim.2004.08.005

    Article  CAS  PubMed  Google Scholar 

  204. Palermo-Neto J, de Oliveira Massoco C, Robespierre de Souza W (2003) Effects of physical and psychological stressors on behavior, macrophage activity, and Ehrlich tumor growth. Brain Behav Immun 17:43–54. https://doi.org/10.1016/s0889-1591(02)00057-0

    Article  CAS  PubMed  Google Scholar 

  205. Saul AN et al (2005) Chronic stress and susceptibility to skin cancer. J Natl Cancer Inst 97:1760–1767. https://doi.org/10.1093/jnci/dji401

    Article  CAS  PubMed  Google Scholar 

  206. Sephton S, Spiegel D (2003) Circadian disruption in cancer: a neuroendocrine-immune pathway from stress to disease? Brain Behav Immun 17:321–328. https://doi.org/10.1016/s0889-1591(03)00078-3

    Article  CAS  PubMed  Google Scholar 

  207. Schagen SB et al (2014) Monitoring and optimising cognitive function in cancer patients: Present knowledge and future directions. EJC Suppl 12:29–40. https://doi.org/10.1016/j.ejcsup.2014.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Walker AK et al (2018) Low dose aspirin blocks breast cancer-induced cognitive impairment in mice. PLoS One 13:e0208593. https://doi.org/10.1371/journal.pone.0208593

    Article  PubMed  PubMed Central  Google Scholar 

  209. Engblom C et al (2017) Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF(high) neutrophils. Science 358. https://doi.org/10.1126/science.aal5081

  210. Garofalo C et al (2006) Increased expression of leptin and the leptin receptor as a marker of breast cancer progression: possible role of obesity-related stimuli. Clinical Cancer Res 12:1447–1453. https://doi.org/10.1158/1078-0432.CCR-05-1913

    Article  CAS  Google Scholar 

  211. Soleyman-Jahi S et al (2019) Attribution of Ghrelin to cancer; attempts to unravel an apparent controversy. Front Oncol 9:1014. https://doi.org/10.3389/fonc.2019.01014

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Magnon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Magnon, C. (2021). The Adrenergic Nerve Network in Cancer. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1329. Springer, Cham. https://doi.org/10.1007/978-3-030-73119-9_15

Download citation

Publish with us

Policies and ethics