Skip to main content

Multi-Scale Biophysical Factors Driving Litter Dynamics in Streams

  • Chapter
  • First Online:
The Ecology of Plant Litter Decomposition in Stream Ecosystems

Abstract

Terrestrial litter that decomposes in streams is critical to carbon and nutrient fluxes and aquatic food web dynamics. Litter dynamics is influenced by biogeochemical, morphological, environmental and climatic factors, making it challenging to understand how these factors relate to each other and to litter decomposition across different spatial scales. Here, we present a hierarchical framework that accommodates the links among a wide variety of local and regional factors (e.g., litter quality, water chemistry, flow) in relation to climate, geology, biogeography and phylogeny. These factors ultimately influence the agents or processes (e.g., microbes, detritivores, physical fragmentation, retention capacity) that govern litter inputs, storage and decomposition in streams. This framework highlights the dependence of litter dynamics on spatial scale and cautions against extrapolations across scales without quantifying the influence of biophysical variables on the different agents and processes. The framework can be used as a basis for experimental and observational studies of those interactions to develop broader mechanistic understanding of litter dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelho, M. (2001). From litterfall to breakdown in streams: A review. Scientific World Journal, 1, 656–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arsuffi, T. L., & Suberkropp, K. (1989). Selective feeding by shredders on leaf-colonizing stream fungi: Comparison of macroinvertebrate taxa. Oecologia, 79, 30–37.

    Article  CAS  PubMed  Google Scholar 

  • Bärlocher, F. (1985). The role of fungi in the nutrition of stream invertebrates. Botanical Journal of the Linnean Society, 91, 83–94.

    Article  Google Scholar 

  • Bärlocher, F. (2005). Freshwater fungal communities. In J. Dighton & J. F. White (Eds.), The fungal community: Its organization and role in the ecosystem (p. 39). CRC Press.

    Google Scholar 

  • Bastian, M., Pearson, R. G., & Boyero, L. (2008). Effects of diversity loss on ecosystem function across trophic levels and ecosystems: A test in a detritus-based tropical food web. Austral Ecology, 33, 301–306.

    Article  Google Scholar 

  • Battin, T. J., Kaplan, L. A., Findlay, S., Hopkinson, C. S., Marti, E., Packman, A. I., Newbold, J. D., & Sabater, F. (2008). Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geoscience, 1, 95–100.

    Article  CAS  Google Scholar 

  • Benson, L. J., & Pearson, R. G. (1993). Litter inputs to a tropical Australian rainforest stream. Austral Ecology, 18, 377–383.

    Article  Google Scholar 

  • Boulton, A. J., Findlay, S., Marmonier, P., Stanley, E. H., & Valett, M. H. (1998). The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics, 29, 59–81.

    Article  Google Scholar 

  • Boyero, L., Graça, M. A. S., Tonin, A. M., Pérez, J., Swafford, J. A., Ferreira, V., Landeira-Dabarca, A., Alexandrou, A. M., Gessner, M. O., McKie, B. G., Albariño, R. J., Barmuta, L. A., Callisto, M., Chará, J., Chauvet, E., Colón-Gaud, C., Dudgeon, D., Encalada, A. C., Figueroa, R., … Pearson, R. G. (2017). Riparian plant litter quality increases with latitude. Scientific Reports, 7, 10562.

    Google Scholar 

  • Boyero, L., & Pearson, R. G. (2006). Intraspecific interference in a tropical stream shredder guild. Marine and Freshwater Research, 57, 201–206.

    Article  Google Scholar 

  • Boyero, L., & Pearson, R. G. (2017). Global-scale coordinated networks as a tool for exploring the functioning of stream ecosystems. Limnetica, 36, 557–565.

    Google Scholar 

  • Boyero, L., Pearson, R. G., Dudgeon, D., Graça, M. A. S., Gessner, M. O., Albariño, R., Ferreira, V., Yule, C. M., Boulton, A. J., Arunachalam, M., Callisto, M., Chauvet, E., Ramírez, A., Chará, J., Moretti, M. S., Gonçalves, J. F. J., Helson, J. E., Chará-Serna, A., Encalada, A. C., … Pringle, C. M. (2011). Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology, 92, 1839–1848.

    Google Scholar 

  • Boyero, L., Pearson, R. G., Gessner, M. O., Barmuta, L. A., Ferreira, V., Graça, M. A. S., Dudgeon, D., Boulton, A. J., Callisto, M., Chauvet, E., Helson, J. E., Bruder, A., Albariño, R. J., Yule, C. M., Arunachalam, M., Davies, J. N., Figueroa, R., Flecker, A. S., Ramírez, A., … West, D. C. (2011). A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecology Letters, 14, 289–294.

    Google Scholar 

  • Boyero, L., Pearson, R. G., Gessner, M. O., Dudgeon, D., Ramírez, A., Yule, C. M., Callisto, M., Pringle, C. M., Encalada, A. C., Arunachalam, M., Mathooko, J., Helson, J. E., Rincón, J., Bruder, A., Cornejo, A., Flecker, A. S., Mathuriau, C., M’Erimba, C., Gonçalves Jr, J. F., … Jinggut, T. (2015). Leaf-litter breakdown in tropical streams: is variability the norm? Freshwater Science, 34, 759–769.

    Google Scholar 

  • Boyero, L., Rincón, P. A., & Pearson, R. G. (2008). Effects of a predatory fish on a tropical detritus-based food web. Ecological Research, 23, 649–655.

    Article  Google Scholar 

  • Casotti, C. G., Kiffer, W. P., Costa, L. C., Barbosa, P., & Moretti, M. S. (2019). The longer the conditioning, the better the quality? The effects of leaf conditioning time on aquatic hyphomycetes and performance of shredders in a tropical stream. Aquatic Ecology, 53, 163–178.

    Article  Google Scholar 

  • Casper, B. B., & Jackson, R. B. (1997). Plant competition underground. Annual Review of Ecology and Systematics, 28, 545–570.

    Article  Google Scholar 

  • Chamier, A.-C. (1987). Effect of pH on microbial degradation of leaf litter in seven streams of the English Lake District. Oecologia, 71, 491–500.

    Article  Google Scholar 

  • Chergui, H., & Pattee, E. (1988). Effect of water current on the decomposition of dead leaves and needles. Verhandlungen Des Internationalen Verein Limnologie, 23, 1294–1298.

    Google Scholar 

  • Cheshire, K., Boyero, L., & Pearson, R. G. (2005). Food webs in tropical Australian streams: Shredders are not scarce. Freshwater Biology, 50, 748–769.

    Article  Google Scholar 

  • Cogo, G. B., & Santos, S. (2013). The role of aeglids in shredding organic matter in Neotropical streams. Journal of Crustacean Biology, 33, 519–526.

    Article  Google Scholar 

  • Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., & Middelburg, J. J. (2007). Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems, 10, 172–185.

    Article  Google Scholar 

  • Coughlan, J. F., Pearson, R. G., & Boyero, L. (2010). Crayfish process leaf litter in tropical streams even when shredding insects are common. Marine and Freshwater Research, 61, 541–548.

    Article  CAS  Google Scholar 

  • Covich, A. P. (1988). Geographical and historical comparisons of neotropical streams: Biotic diversity and detrital processing in highly variable habitats. Journal of the North American Benthological Society, 7, 361–386.

    Article  Google Scholar 

  • Crowl, T. A., McDowell, W. H., Covich, A. P., & Johnson, S. L. (2001). Freshwater shrimp effects on detrital processing and nutrients in a tropical headwater stream. Ecology, 82, 775–783.

    Article  Google Scholar 

  • Cummins, K. W., & Klug, M. J. (1979). Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics, 10, 147–172.

    Article  Google Scholar 

  • Dang, C. K., Schindler, M., Chauvet, E., & Gessner, M. O. (2009). Temperature oscillation coupled with fungal community shifts can modulate warming effects on litter decomposition. Ecology, 90, 122–131.

    Article  PubMed  Google Scholar 

  • Dangles, O., Gessner, M. O., Guerold, F., & Chauvet, E. (2004). Impacts of stream acidification on litter breakdown: Implications for assessing ecosystem functioning. Journal of Applied Ecology, 41, 365–378.

    Article  CAS  Google Scholar 

  • Dangles, O., & Guérold, F. (1999). Impact of headwater stream acidification on the trophic structure of macroinvertebrate communities. International Review of Hydrobiology, 84, 287–297.

    CAS  Google Scholar 

  • Díez, J., Larrañaga, S., Elosegi, A., & Pozo, J. (2000). Effect of removal of wood on streambed stability and retention of organic matter. Journal of the North American Benthological Society, 19, 621–632.

    Article  Google Scholar 

  • Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z., Knowler, D. J., Leveque, C., Naiman, R. J., Prieur-Richard, A. H., Soto, D., Stiassny, M. L., & Sullivan, C. A. (2006). Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society, 81, 163–182.

    Article  PubMed  Google Scholar 

  • Essington, M. E. (2005). Soil and water chemistry: An integrative approach. CRC Press.

    Google Scholar 

  • Ferreira, V., & Chauvet, E. (2011). Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Global Change Biology, 17, 551–564.

    Article  Google Scholar 

  • Ferreira, V., Graça, M. A. S., de Lima, J. L. M. P., & Gomes, R. (2006). Role of physical fragmentation and invertebrate activity in the breakdown rate of leaves. Archiv für Hydrobiologie, 165, 493–513.

    Article  CAS  Google Scholar 

  • Findlay, S. E. G., & Arsuffi, T. L. (1989). Microbial growth and detritus transformations during decomposition of leaf litter in a stream. Freshwater Biology, 21, 261–269.

    Article  Google Scholar 

  • Fisher, S. G., & Likens, G. E. (1972). Stream ecosystem: Organic energy budget. BioScience, 22, 33–35.

    Article  Google Scholar 

  • Fisher, S. G., & Likens, G. E. (1973). Energy flow in Bear Brook, New Hampshire: An integrative approach to stream ecosystem metabolism. Ecological Monographs, 43, 421–439.

    Article  Google Scholar 

  • Fonseca, A. L. S., Bianchini, I. J., Pimenta, C. M. M., Soares, C. B. P., & Mangiavacchi, N. (2013). The flow velocity as driving force for decomposition of leaves and twigs. Hydrobiologia, 703, 59–67.

    Article  Google Scholar 

  • García-Palacios, P., Shaw, E. A., Wall, D. H., & Hättenschwiler, S. (2016). Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecology Letters, 19, 554–563.

    Article  PubMed  Google Scholar 

  • Gebely, T. (2016). Tea: A user’s guide. Eggs and Toast Media, LCC.

    Google Scholar 

  • Gessner, M. O., Chauvet, E., & Dobson, M. (1999). A perspective on leaf litter breakdown in streams. Oikos, 85, 377–384.

    Article  Google Scholar 

  • Gleick, P. H. (1996). Water resources. Encyclopedia of Climate and Weather, 2, 817–823.

    Google Scholar 

  • Gomes, P. P. (2015). Influência da química do detrito foliar e da água sobre a comunidade de hifomicetos aquáticos. PhD Thesis, University of Brasília.

    Google Scholar 

  • Gonçalves, J. F. J., Graça, M. A. S., & Callisto, M. (2007). Litter decomposition in a Cerrado savannah stream is retarded by leaf toughness, low dissolved nutrients and a low density of shredders. Freshwater Biology, 52, 1440–1451.

    Article  Google Scholar 

  • Graça, M. A. S. (2001). The role of invertebrates on leaf litter decomposition in streams—A review. International Review of Hydrobiology, 86, 383–393.

    Article  Google Scholar 

  • Graça, M. A. S., Cressa, C., Gessner, M. O., Feio, M. J., Callies, K. A., & Barrios, C. (2001). Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshwater Biology, 46, 947–957.

    Article  Google Scholar 

  • Graça, M. A. S., Ferreira, V., Canhoto, C., Encalada, A. C., Guerrero-Bolaño, F., Wantzen, K. M., & Boyero, L. (2015). A conceptual model of litter breakdown in low order streams. International Review of Hydrobiology, 100, 1–12.

    Article  Google Scholar 

  • Hall, R. O., Wallace, J. B., & Eggert, S. L. (2000). Organic matter flow in stream food webs with reduced detrital resource base. Ecology, 81, 3445–3463.

    Article  Google Scholar 

  • Heard, S. B., Schultz, G. A., Ogden, C. B., & Griesel, T. C. (1999). Mechanical abrasion and organic matter processing in an Iowa stream. Hydrobiologia, 400, 179–186.

    Article  Google Scholar 

  • Heino, J., Louhi, P., & Muotka, T. (2004). Identifying the scales of variability in stream macroinvertebrate abundance functional composition and assemblage structure. Freshwater Biology, 49, 1230–1239.

    Google Scholar 

  • Heino, J., Melo, A. S., Jyrkänkallio-Mikkola, J., Petsch, D. K., Saito, V. S., Tolonen, K. T., Bini, L. M., Landeiro, V. L., Silva, T. S. F., & Pajunen, V. (2018). Subtropical streams harbour higher genus richness and lower abundance of insects compared to boreal streams, but scale matters. Journal of Biogeography, 45, 1983–1993.

    Article  Google Scholar 

  • Herrmann, J., Degerman, E., Gerhardt, A., Johansson, C., Lingdell, P. E., & Muniz, I. P. (1993). Acid-stress effects on stream biology. Ambio, 22, 298–307.

    Google Scholar 

  • Hieber, M., & Gessner, M. O. (2002). Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology, 83, 1026–1038.

    Article  Google Scholar 

  • Hoover, T. M., Richardson, J. S., & Yonemitsu, N. (2006). Flow-substrate interactions create and mediate leaf litter resource patches in streams. Freshwater Biology, 51, 435–447.

    Article  Google Scholar 

  • Hotchkiss, E. R., Hall, R. O., Jr., Sponseller, R. A., Butman, D., Klaminder, J., Laudon, H., Rosvall, M., & Karlsson, J. (2015). Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nature Geoscience, 8, 696–699.

    Article  CAS  Google Scholar 

  • Hupp, C. R., Dufour, S., & Bornette, G. (2016). Vegetation as a tool in the interpretation of fluvial geomorphic processes and landforms. In G. M. Kondolf & H. Piégay (Eds.), Tools in fluvial geomorphology (pp. 210–226). Wiley.

    Chapter  Google Scholar 

  • Jenkins, C. C., & Suberkropp, K. (1995). The influence of water chemistry on the enzymatic degradation of leaves in streams. Freshwater Biology, 33, 245–253.

    Article  CAS  Google Scholar 

  • Jones, J. B. (1997). Benthic organic matter storage in streams: Influence of detrital import and export, retention mechanisms, and climate. Journal of the North American Benthological Society, 16, 109–119.

    Google Scholar 

  • Jonsson, M., & Malmqvist, B. (2000). Ecosystem process rate increases with animal species richness: Evidence from leaf-eating, aquatic insects. Oikos, 89, 519–523.

    Article  Google Scholar 

  • Kuiters, A. T., & Sarink, H. M. (1986). Leaching of phenolic compounds from leaf and needle litter of several deciduous and coniferous trees. Soil Biology and Biochemistry, 18, 475–480.

    Article  CAS  Google Scholar 

  • Leopold, L. B., Wolman, M. G., & Miller, J. P. (1992). Fluvial processes in geomorphology. Courier Corporation.

    Google Scholar 

  • Levin, S. A. (1992). The problem of pattern and scale in ecology: The Robert H. MacArthur Award Lecture. Ecology, 73, 1943–1967.

    Article  Google Scholar 

  • Marks, J. C. (2019). Revisiting the fates of dead leaves that fall into streams. Annual Review of Ecology, Evolution, and Systematics, 50, 547–568.

    Article  Google Scholar 

  • Martiny, J. B. H., Bohannan, B. J. M., Brown, J. H., Colwell, R. K., Fuhrman, J. A., Green, J. L., Horner-Devine, M. C., Kane, M., Krumins, J. A., Kuske, C. R., Morin, P. J., Naeem, S., Ovreas, L., Reysenbach, A.-L., Smith, V. H., & Staley, J. T. (2006). Microbial biogeography: Putting microorganisms on the map. Nature Reviews Microbiology, 4, 102–112.

    Article  CAS  PubMed  Google Scholar 

  • Moulton, T., Magalhães-Fraga, S. P., Brito, E., & Barbosa, F. (2010). Macroconsumers are more important than specialist macroinvertebrate shredders in leaf processing in urban forest streams of Rio de Janeiro, Brazil. Hydrobiologia, 638, 55–66.

    Article  Google Scholar 

  • Neres-Lima, V., Machado-Silva, F., Baptista, D. F., Oliveira, R. B. S., Andrade, P. M., Oliveira, A. F., Sasada-Sato, C. Y., Silva-Junior, E. F., Feijó-Lima, R., Angelini, R., Camargo, P. B., & Moulton, T. P. (2017). Allochthonous and autochthonous carbon flows in food webs of tropical forest streams. Freshwater Biology, 62, 1012–1023.

    Article  CAS  Google Scholar 

  • Nolen, J., & Pearson, R. (1992). Life history studies of Anisocentropus kirramus Neboiss (Trichoptera: Calamoceratidae) in a tropical Australian rainforest stream. Aquatic Insects, 14, 213–221.

    Article  Google Scholar 

  • Nolen, J., & Pearson, R. (1993). Factors affecting litter processing by Anisocentropus kirramus (Trichoptera: Calamoceratidae) from an Australian tropical rainforest stream. Freshwater Biology, 29, 469–479.

    Article  Google Scholar 

  • O’Malley, M. A. (2007). The nineteenth century roots of ‘everything is everywhere’. Nature Reviews Microbiology, 5, 647.

    PubMed  Google Scholar 

  • Pozo, J., González, E., Díez, J., & Elosegi, A. (1997). Leaf-litter budgets in two contrasting forested streams. Limnetica, 13, 77–84.

    Article  Google Scholar 

  • Rader, R. B., McArthur, J. V., & Aho, J. M. (1994). Relative importance of mechanisms determining decomposition in a Southeastern blackwater stream. The American Midland Naturalist, 132, 19–31.

    Article  Google Scholar 

  • Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., & Humborg, C. (2013). Global carbon dioxide emissions from inland waters. Nature, 503, 355–359.

    Article  CAS  PubMed  Google Scholar 

  • Rezende, R. S., Petrucio, M. M., & Gonçalves, J. F., Jr. (2014). The effects of spatial scale on breakdown of leaves in a tropical watershed. PLoS ONE, 9, e97072.

    Article  PubMed  PubMed Central  Google Scholar 

  • Royer, T. V., & Minshall, G. W. (2003). Control on Leaf processing in streams from spatial-scaling and hierarchical perspectives. Journal of the North American Benthological Society, 22, 352–358.

    Article  Google Scholar 

  • Schneider, T., Keiblinger, K. M., Schmid, E., Sterflinger-Gleixner, K., Ellersdorfer, G., Roschitzki, B., Richter, A., Eberl, L., Zechmeister-Boltenstern, S., & Riedel, K. (2012). Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. The ISME journal, 6, 1749–1762.

    Google Scholar 

  • Schreeg, L. A., Mack, M. C., & Turner, B. L. (2013). Nutrient-specific solubility patterns of leaf litter across 41 lowland tropical woody species. Ecology, 94, 94–105.

    Article  PubMed  Google Scholar 

  • Siefert, A., Violle, C., Chalmandrier, L., Albert, C. H., Taudiere, A., Fajardo, A., Aarssen, L. W., Baraloto, C., Carlucci, M. B., Cianciaruso, M. V., de L. Dantas, V., de Bello, F., Duarte, L. D. S., Fonseca, C. R., Freschet, G. T., Gaucherand, S., Gross, N., Hikosaka, K., Jackson, B., … Wardle, D. A. (2015). A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18, 1406–1419.

    Google Scholar 

  • Suberkropp, K., & Chauvet, E. (1995). Regulation of leaf breakdown by fungi in streams: Influences of water chemistry. Ecology, 76, 1433–1445.

    Article  Google Scholar 

  • Tank, J. L., Rosi-Marshall, E. J., Griffiths, N. A., Entrekin, S. A., & Stephen, M. L. (2010). A review of allochthonous organic matter dynamics and metabolism in streams. Journal of the North American Benthological Society, 29, 118–146.

    Google Scholar 

  • Taylor, B. R., & Bärlocher, F. (1996). Variable effects of air-drying on leaching losses from tree leaf litter. Hydrobiologia, 325, 173–182.

    Article  CAS  Google Scholar 

  • Tiegs, S. D., Akinwole, P. O., & Gessner, M. O. (2009). Litter decomposition across multiple spatial scales in stream networks. Oecologia, 161, 343–351.

    Article  PubMed  Google Scholar 

  • Tonello, G., Naziloski, L. A., Tonin, A. M., Restello, R. M., & Hepp, L. U. (2016). Effect of Phylloicus on leaf breakdown in a subtropical stream. Limnetica, 35, 243–252.

    Google Scholar 

  • Tonin, A. M., Boyero, L., Bambi, P., Pearson, R. G., Correa-Araneda, F., & Gonçalves Jr., J.F. (2019). High within-stream replication is needed to predict litter fluxes in wet–dry tropical streams. Freshwater Biology, 65, 688–697.

    Google Scholar 

  • Tonin, A. M., Boyero, L., Monroy, S., Basaguren, A., Pérez, J., Pearson, R. G., Cardinale, B. J., Gonçalves, J. F., & Pozo, J. (2017). Stream nitrogen concentration, but not plant N-fixing capacity, modulates litter diversity effects on decomposition. Functional Ecology, 31, 1471–1481.

    Article  Google Scholar 

  • Tonin, A. M., Gonçalves Jr., J. F., Bambi, P., Couceiro, S. R. M., Feitoza, L. A. M., Fontana, L. E., Hamada, N., Hepp, L. U., Lezan-Kowalczuk, V. G., Leite, G. F. M., Lemes-Silva, A. L., Lisboa, L. K., Loureiro, R. C., Martins, R. T., Medeiros, A. O., Morais, P. B., Moretto, Y., Oliveria, P. C. A., Pereira, E. B., … Boyero, L. (2017). Plant litter dynamics in the forest-stream interface: Precipitation is a major control across tropical biomes. Scientific Reports, 7, 10799.

    Google Scholar 

  • Tonin, A. M., Hepp, L. U., & Gonçalves Jr., J. F. (2018). Spatial variability of plant litter decomposition in stream networks: From litter bags to watersheds. Ecosystens, 21, 567–581.

    Google Scholar 

  • Tonin, A. M., Hepp, L. U., Restello, R. M., & Gonçalves, J. F., Jr. (2014). Understanding of colonization and breakdown of leaves by invertebrates in a tropical stream is enhanced by using biomass as well as count data. Hydrobiologia, 740, 79–88.

    Article  Google Scholar 

  • Tonin, A. M., Pozo, J., Monroy, S., Basaguren, A., Pérez, J., Gonçalves, J. F., Jr., Pearson, R., Cardinale, B. J., & Boyero, L. (2018). Interactions between large and small detritivores influence how biodiversity impacts litter decomposition. Journal of Animal Ecology, 87, 1465–1474.

    Article  Google Scholar 

  • Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130–137.

    Article  Google Scholar 

  • Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F., & Jackson, R. B. (2012). Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs, 82, 205–220.

    Article  Google Scholar 

  • Wallace, J. B., Eggert, S. L., Meyer, J. L., & Webster, J. R. (1997). Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science, 277, 102–104.

    Article  CAS  Google Scholar 

  • Wallace, J. B., Webster, J. R., & Meyer, J. L. (1995). Influence of log additions on physical and biotic characteristics of a mountain stream. Canadian Journal of Fisheries and Aquatic Sciences, 52, 2120–2137.

    Article  Google Scholar 

  • Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., van der Putten, W. H., & Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629–1633.

    Article  CAS  PubMed  Google Scholar 

  • Webster, J. R., Benfield, E. F., Ehrman, T. P., Schaeffer, M. A., Tank, J. L., Hutchens, J. J., & D’Angelo, D. J. (1999). What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta. Freshwater Biology, 41, 687–705.

    Article  Google Scholar 

  • Webster, J. R., & Meyer, J. L. (1997). Stream organic matter budgets: An introduction. Journal of the North American Benthological Society, 16, 3–13.

    Article  Google Scholar 

  • Wootton, A., Pearson, R. G., & Boyero, L. (2019). Patterns of flow, leaf litter and shredder abundance in a tropical stream. Hydrobiologia, 826, 353–365.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tonin, A.M., Gonçalves Júnior, J.F., Pearson, R., Graça, M.A.S., Pérez, J., Boyero, L. (2021). Multi-Scale Biophysical Factors Driving Litter Dynamics in Streams. In: Swan, C.M., Boyero, L., Canhoto, C. (eds) The Ecology of Plant Litter Decomposition in Stream Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-72854-0_2

Download citation

Publish with us

Policies and ethics