Skip to main content

Evolutionary Algorithms for Roughness Coefficient Estimation in River Flow Analyses

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2021)

Abstract

Management and analyses of water resources is of paramount importance in the implementation of water related sustainable development goals. Hydraulic models are key in flood forecasting and simulation applied to a river flood analysis and risk prediction and an accurate estimation of the roughness is one of the main factors in predicting the discharge in a stream. In practical implementation roughness can be represented by the prediction of the well known Manning’s coefficient necessary for discharge calculation. In this paper we design an objective function that measures the quality of a given configuration of the Manning’s coefficient. Such an objective function is optimised through several evolutionary approaches, namely: (1+1)-ES, CMA-ES, Differential Evolution, Particle Swarm Optimization and Bayesian Optimization. As case of study, a river in the central Italy was considered. The results indicate that the model, consistent with the classical techniques adopted in the hydraulic engineering field, is applicable to natural rivers and is able to provide an estimation of the roughness coefficients with a satisfactory accuracy. A comparison of the performances of the five evolutionary algorithms is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available at https://www.regione.umbria.it/ambiente/servizio-idrografico.

References

  1. HEC-RAS, User Manual, Davis Version 4.0

    Google Scholar 

  2. Atanov, G.A., Evseeva, E.G., Meselhe, E.A.: Estimation of roughness profile in trapezoidal open channels. J. Hydraulic Eng. 125(3), 309–312 (1999)

    Article  Google Scholar 

  3. Baioletti, M., Milani, A., Santucci, V.: Variable neighborhood algebraic differential evolution: An application to the linear ordering problem with cumulative costs. Inf. Sci. 507, 37–52 (2020)

    Article  Google Scholar 

  4. Becker, L., Yeh, W.W.G.: Identification of parameters in unsteady open channel flows. Water Resour. Res. 8(4), 956–965 (1972)

    Article  Google Scholar 

  5. Becker, L., Yeh, W.W.G.: Identification of multiple reach channel parameters. Water Resour. Res. 9(2), 326–335 (1973)

    Article  Google Scholar 

  6. Beyer, H.G., Schwefel, H.P.: Evolution strategies - A comprehensive introduction. Nat. Comput. 1(1), 3–52 (2002)

    Article  MathSciNet  Google Scholar 

  7. Brabazon, A., O’Neill, M., McGarraghy, S.: Natural Computing Algorithms, 1st edn. Springer, Cham (2015)

    Google Scholar 

  8. Di Francesco, S., Zarghami, A., Biscarini, C., Manciola, P.: Wall roughness effect in the lattice Boltzmann method. In: AIP Conference Proceedings, vol. 1558, pp. 1677–1680. American Institute of Physics (2013)

    Google Scholar 

  9. Di Francesco, S., Biscarini, C., Manciola, P.: Numerical simulation of water free-surface flows through a front-tracking lattice Boltzmann approach. J. Hydroinformatics 17(1), 1–6 (2015)

    Article  Google Scholar 

  10. Di Francesco, S., Biscarini, C., Manciola, P.: Characterization of a flood event through a sediment analysis: the Tescio river case study. Water 8(7), 308 (2016)

    Article  Google Scholar 

  11. Drake, J., Bradford, A., Joy, D.: Application of HEC-RAS 4.0 temperature model to estimate groundwater contributions to Swan Creek, Ontario, Canada. J. Hydrol. 389(3), 390–398 (2010)

    Google Scholar 

  12. Frazier, P.I.: A tutorial on bayesian optimization. Preprint arXiv:1807.02811 (2018)

  13. Gray, D.N., Hotchkiss, J., LaForge, S., Shalit, A., Weinberg, T.: Modern languages and Microsoft’s component object model. Commun. ACM 41(5), 55–65 (1998)

    Article  Google Scholar 

  14. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)

    Article  Google Scholar 

  15. Hollander, M., Wolfe, D.A., Chicken, E.: Nonparametric statistical methods, vol. 751. Wiley (2013)

    Google Scholar 

  16. Horritt, M., Bates, P.: Evaluation of 1D and 2D numerical models for predicting river flood inundation. J. Hydrol. 268(1), 87–99 (2002)

    Article  Google Scholar 

  17. Kachiashvili, K.: Software realization problems of mathematical models of pollutants transport in rivers. Adv. Eng. Softw. 40(10), 1063–1073 (2009)

    Article  Google Scholar 

  18. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  19. Larsen, R.B., Jouffroy, J., Lassen, B.: On the premature convergence of particle swarm optimization. In: Proceedings of 2016 Eur. Control Conference, pp. 1922–1927 (2016)

    Google Scholar 

  20. Perry, B.: Open-channel hydraulics. Science 131(3408), 1215–1215 (1960)

    Article  Google Scholar 

  21. Pinar, E., et al.: Artificial neural network approaches for prediction of backwater through arched bridge constrictions. Adv. Eng. Softw 41(4), 627–635 (2010)

    Article  MathSciNet  Google Scholar 

  22. Rapin, J., Teytaud, O.: Nevergrad - A gradient-free optimization platform (2018). https://GitHub.com/FacebookResearch/Nevergrad

  23. Rapin, J., Bennet, P., Centeno, E., Haziza, D., Moreau, A., Teytaud, O.: Open source evolutionary structured optimization. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pp. 1599–1607 (2020)

    Google Scholar 

  24. Rodriguez, L.B., Cello, P.A., Vionnet, C.A., Goodrich, D.: Fully conservative coupling of HEC-RAS with MODFLOW to simulate stream-aquifer interactions in a drainage basin. J. Hydrol. 353(1), 129–142 (2008)

    Article  Google Scholar 

  25. Santucci, V., Baioletti, M., Di Bari, G., Milani, A.: A binary algebraic differential evolution for the MultiDimensional two-way number partitioning problem. In: Liefooghe, A., Paquete, L. (eds.) EvoCOP 2019. LNCS, vol. 11452, pp. 17–32. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16711-0_2

    Chapter  Google Scholar 

  26. Santucci, V., Milani, A., Caraffini, F.: An optimisation-driven prediction method for automated diagnosis and prognosis. Mathematics 7(11), 1051 (2019)

    Article  Google Scholar 

  27. Shen, D., Jia, Y., Altinakar, M., Bingner, R.L.: GIS-based channel flow and sediment transport simulation using CCHE1D coupled with AnnAGNPS. J. Hydraul. Res. 54(5), 567–574 (2016)

    Article  Google Scholar 

  28. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  29. Violante, C., Biscarini, C., Esposito, E., Molisso, F., Porfido, S., Sacchi, M., et al.: The consequences of hydrological events on steep coastal watersheds: the Costa d’Amalfi, eastern Tyrrhenian Sea. IAHS Publ. 327, 102 (2009)

    Google Scholar 

  30. Zischg, A.P., Mosimann, M., Bernet, D.B., Röthlisberger, V.: Validation of 2D flood models with insurance claims. J. Hydrol. 557, 350–361 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the following research grants: (i) Università per Stranieri di Perugia – Progetto di ricerca Artificial Intelligence for Education, Social and Human Sciences; (ii) Università per Stranieri di Perugia – Finanziamento per Progetti di Ricerca di Ateneo—PRA 2020; (iii) PRIN project PHRAME: Phraseological Complexity Measures in learner Italian.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentino Santucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agresta, A., Baioletti, M., Biscarini, C., Milani, A., Santucci, V. (2021). Evolutionary Algorithms for Roughness Coefficient Estimation in River Flow Analyses. In: Castillo, P.A., Jiménez Laredo, J.L. (eds) Applications of Evolutionary Computation. EvoApplications 2021. Lecture Notes in Computer Science(), vol 12694. Springer, Cham. https://doi.org/10.1007/978-3-030-72699-7_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72699-7_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72698-0

  • Online ISBN: 978-3-030-72699-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics