Skip to main content

Utilizing the Untapped Potential of Indirect Encoding for Neural Networks with Meta Learning

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2021)

Abstract

Indirect encoding is a promising area of research in machine learning/evolutionary computation, however, it is rarely able to achieve performance on par with state of the art directly encoded methods. One of the most important properties of indirect encoding is the ability to control exploration during learning by transforming random genotypic variation into an arbitrary distribution of phenotypic variation. This gives indirect encoding a capacity to learn to be adaptable in a way which is not possible for direct encoding. However, during normal objective based learning, there is no direct selection for adaptability, which results in not only a missed opportunity to improve the ability to learn, but often degrading it too. The recent meta learning algorithm MAML makes it possible to directly and efficiently optimize for the ability to adapt. This paper demonstrates that even when indirect encoding can be detrimental to performance in the case of normal learning, when selecting for the ability to adapt, indirect encoding can outperform direct encoding in a fair comparison. The indirect encoding technique Hypernetwork was used on the task of few shot image classification on the Omniglot dataset. The results show the importance of directly optimizing for adaptability in realizing the powerful potential of indirect encoding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altenberg, L., et al.: The evolution of evolvability in genetic programming. Adv. Genet. Program. 3, 47–74 (1994)

    Google Scholar 

  2. Antoniou, A., Edwards, H., Storkey, A.: How to train your MAML. arXiv preprint arXiv:1810.09502 (2018)

  3. AssunĂ§Ă£o, F., Lourenço, N., Machado, P., Ribeiro, B.: Using GP Is NEAT: evolving compositional pattern production functions. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., GarcĂ­a-SĂ¡nchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 3–18. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77553-1_1

    Chapter  Google Scholar 

  4. Brown, T.B., et al.: Language models are few-shot learners. arXiv preprint arXiv:2005.14165 (2020)

  5. Choromanska, A., Henaff, M., Mathieu, M., Arous, G.B., LeCun, Y.: The loss surfaces of multilayer networks. In: Artificial Intelligence and Statistics, pp. 192–204 (2015)

    Google Scholar 

  6. Clune, J., Ofria, C., Pennock, R.T.: How a generative encoding fares as problem-regularity decreases. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 358–367. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_36

    Chapter  Google Scholar 

  7. Clune, J., Ofria, C., Pennock, R.T.: The sensitivity of HyperNEAT to different geometric representations of a problem. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 675–682 (2009)

    Google Scholar 

  8. Fernando, C., et al.: Convolution by evolution: differentiable pattern producing networks. Proc. Genet. Evol. Comput. Conf. 2016, 109–116 (2016)

    Google Scholar 

  9. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. arXiv preprint arXiv:1703.03400 (2017)

  10. Gajewski, A., Clune, J., Stanley, K.O., Lehman, J.: Evolvability ES: scalable and direct optimization of evolvability. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 107–115 (2019)

    Google Scholar 

  11. Gauci, J., Stanley, K.O.: A case study on the critical role of geometric regularity in machine learning. In: AAAI, pp. 628–633 (2008)

    Google Scholar 

  12. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  13. Ha, D., Dai, A., Le, Q.V.: Hypernetworks. arXiv preprint arXiv:1609.09106 (2016)

  14. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 312–317. IEEE (1996)

    Google Scholar 

  15. Hausknecht, M., Lehman, J., Miikkulainen, R., Stone, P.: A neuroevolution approach to general atari game playing. IEEE Trans. Comput. Intell. AI Games 6(4), 355–366 (2014)

    Article  Google Scholar 

  16. Huizinga, J., Clune, J., Mouret, J.B.: Evolving neural networks that are both modular and regular: hyperneat plus the connection cost technique. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 697–704 (2014)

    Google Scholar 

  17. Huizinga, J., Stanley, K.O., Clune, J.: The emergence of canalization and evolvability in an open-ended, interactive evolutionary system. Artif. Life 24(3), 157–181 (2018)

    Article  Google Scholar 

  18. Lake, B., Salakhutdinov, R., Gross, J., Tenenbaum, J.: One shot learning of simple visual concepts. In: Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 33 (2011)

    Google Scholar 

  19. Mengistu, H., Lehman, J., Clune, J.: Evolvability search: directly selecting for evolvability in order to study and produce it. Proc. Genet. Evol. Comput. Conf. 2016, 141–148 (2016)

    Google Scholar 

  20. Pigliucci, M.: Is evolvability evolvable? Nat. Rev. Genet. 9(1), 75–82 (2008)

    Article  Google Scholar 

  21. Risi, S., Stanley, K.O.: Enhancing ES-hyperneat to evolve more complex regular neural networks. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 1539–1546 (2011)

    Google Scholar 

  22. Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strategies as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864 (2017)

  23. Song, X., Gao, W., Yang, Y., Choromanski, K., Pacchiano, A., Tang, Y.: ES-MAML: Simple hessian-free meta learning. arXiv preprint arXiv:1910.01215 (2019)

  24. Stanley, K.O.: Compositional pattern producing networks: a novel abstraction of development. Genet. Program. Evolvable Mach. 8(2), 131–162 (2007)

    Article  Google Scholar 

  25. Stanley, K.O., Clune, J., Lehman, J., Miikkulainen, R.: Designing neural networks through neuroevolution. Nat. Mach. Intell. 1(1), 24–35 (2019)

    Article  Google Scholar 

  26. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15(2), 185–212 (2009)

    Article  Google Scholar 

  27. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  28. Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artif. Life 9(2), 93–130 (2003)

    Article  Google Scholar 

  29. Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567 (2017)

  30. Sutton, R.: The bitter lesson. Incomplete Ideas (blog), March 13, 12 (2019)

    Google Scholar 

  31. Watson, R.A., SzathmĂ¡ry, E.: How can evolution learn? Trends Ecol. Evol. 31(2), 147–157 (2016)

    Article  Google Scholar 

  32. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

Download references

Acknowledgement

This work was supported by the EPSRC Centre for Doctoral Training in Intelligent Games & Game Intelligence (IGGI) [EP/L015846/1] and the Digital Creativity Labs funded by EPSRC/AHRC/Innovate UK [EP/M023265/1]. This work was partially supported by Society for the Promotion of Evolutionary Computation in Europe and its Surroundings (SPECIES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Katona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Katona, A., Lourenço, N., Machado, P., Franks, D.W., Walker, J.A. (2021). Utilizing the Untapped Potential of Indirect Encoding for Neural Networks with Meta Learning. In: Castillo, P.A., Jiménez Laredo, J.L. (eds) Applications of Evolutionary Computation. EvoApplications 2021. Lecture Notes in Computer Science(), vol 12694. Springer, Cham. https://doi.org/10.1007/978-3-030-72699-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72699-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72698-0

  • Online ISBN: 978-3-030-72699-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics