Skip to main content

Third-Generation Biofuels: Bacteria and Algae for Better Yield and Sustainability

  • Reference work entry
  • First Online:
Handbook of Climate Change Mitigation and Adaptation

Abstract

Biofuels have been commercialized, predominantly bioethanol and biodiesel, in pure form or admixed to regular fuels gasoline and diesel, respectively. Mostly, they are based on edible feedstock such as corn, sugarcane, rapeseed, and soybean (so-called first-generation (1G) biofuels). The arising competition over arable land with food crops has caused significant debate, as well as a net contribution to climate change, where it was found that sometimes 1G biofuels perform even worse than petroleum-based fuels, due to land use change, fertilizer usage, and process yields, for instance. Biofuel research has hence targeted lignocellulosic feedstock, which exists in abundance. Due to the stability of these biopolymers, cost-effective 2G (second generation) biofuels are now only at the verge of commercialization. Processes to break up the biomass into fuels are thermochemical and biochemical, using enzymes. 3G (third generation) biofuels have been envisioned, where microorganisms are deployed. For instance, since algae can form up to more than an order of magnitude more biomass per area than terrestrial biomass, they hold great promise for future biofuel production on marginal land or in the ocean. In this chapter, 2G and particularly 3G biofuel concepts, where bacteria and algae are used to obtain biofuels, are discussed. Standard industrial processes, like ethanol fermentation through microorganisms for regular 1G biofuels, and transesterification of various oils to fatty acid methyl esters (FAME, biodiesel) are not covered here. Alternative biofuels from bacteria and algae, such as biomethanol or biohydrogen, are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • (2007) Price volatility in food and agricultural markets: policy responses. FAO, IFAD, IMF, OECD, UNCTAD, WFP, the World Bank, the WTO, IFPRI and the UN HLTF, Rome. http://www.oecd.org/tad/agricultural-trade/48152638.pdf

  • (2008) BioMCN produces biomethanol from by-product glycerol. Focus Catal 2008(12):3. https://doi.org/10.1016/S1351-4180(08)70549-X

  • Aatola H, Larmi M, Sarjovaara T, Mikkonen S (2008) Hydrotreated vegetable oil (HVO) as a renewable diesel fuel: trade-off between NOx, particulate emission, and fuel consumption of a heavy duty engine, SAE paper 2008-01-2500. http://www.biofuelstp.eu/downloads/SAE_Study_Hydrotreated_Vegetable_Oil_HVO_as_a_Renewable_Diesel_Fuel.pdf

  • Adnan NAA, Suhaimi SN, Abd-Aziz S, Hassan MA, Phang L-Y (2014) Optimization of bioethanol production from glycerol by Escherichia coli SS1. Renew Energy 66:625–633

    Article  Google Scholar 

  • Akhtar MK, Dandapani H, Thiel K, Jones PR (2015) Microbial production of 1-octanol: a naturally excreted biofuel with diesel-like properties. Metab Eng Commun 2:1–5

    Article  Google Scholar 

  • Alibardi L, Astrup TF, Spiga D (2020) Organic waste biorefineries: looking towards implementation. Waste Manag 114:274–286

    Article  Google Scholar 

  • Alternative Jet Fuel (2015) http://www.euglena.jp/en/solution/energy.html

  • Apel WA, Walton MR, Dugan PR (1994) An evaluation of autotrophic microbes for the removal of carbon dioxide from combustion gas streams. Fuel Process Technol 40(2–3):139–149

    Article  Google Scholar 

  • Arasto A, Onarheim K, Tsupari E, Kärki J (2014) Bio-CCS: feasibility comparison of large scale carbon-negative solutions. Energy Procedia 63:6756–6769

    Article  Google Scholar 

  • Arifin Y, Tanudjaja E, Dimyati A, Pinontoan R (2014) A second generation biofuel from cellulosic agricultural by-product fermentation using clostridium species for electricity generation. Energy Procedia 47:310–315

    Article  Google Scholar 

  • Ashok B, Nanthagopal K, Balusamy S (2019) Effects of n-octanol as a fuel blend with biodiesel on diesel engine characteristics. Fuel 235:363–373

    Article  Google Scholar 

  • Athar M, Zaidi S (2020) A review of the feedstocks, catalysts, and intensification techniques for sustainable biodiesel production. J Environ Chem Eng 8(6):104523. ISSN 2213-3437, https://doi.org/10.1016/j.jece.2020.104523

  • Bajpai P (2013) Advances in bioethanol. Springer, New Delhi. ISBN-13 978-8132215837

    Book  Google Scholar 

  • Baldwin LC, Davis MC, Woodroffe J–D (2020) Potential oxygenated biofuels synthesized from fusel pentanols. Fuel 270:117505

    Article  Google Scholar 

  • Banerjee DK (2012) Oil sands, heavy oil & bitumen. Penn Well Books. ISBN: 978-1593702601

    Google Scholar 

  • Banu JR, Ginni G, Kumar G (2021) Integrated biorefinery routes of biohydrogen: possible utilization of acidogenic fermentative effluent. Bioresour Technol 319:124241

    Article  Google Scholar 

  • Bharathiraja B, Jayamuthunagai J, Yuvaraj D (2017) Biobutanol – an impending biofuel for future: a review on upstream and downstream processing tecniques. Renew Sust Energ Rev 68(Part 1):788–807

    Article  Google Scholar 

  • Boboescu IZ, Chemarin F, Lavoie J-M (2019) Making next-generation biofuels and biocommodities a feasible reality. Curr Opin Green Sustain Chem 20:25–32

    Article  Google Scholar 

  • Brandt AR, Dale M (2011) A general mathematical framework for calculating systems-scale efficiency of energy extraction and conversion: energy return on investment (EROI) and other energy return ratios. Energies 4:1211–1245. https://doi.org/10.3390/en4081211

    Article  Google Scholar 

  • Bryngemark E (2019) Second generation biofuels and the competition for forest raw materials: a partial equilibrium analysis of Sweden. Forest Policy Econ 109:102022. ISSN 1389-9341, https://doi.org/10.1016/j.forpol.2019.102022

  • Carbajal EMT, Hernández EM, Ballesteros RL (2020) Techno-economic analysis of Scenedesmus dimorphus microalgae biorefinery scenarios for biodiesel production and glycerol valorization. Bioresour Technol Rep 12:100605

    Article  Google Scholar 

  • Ceballos RM (2020) Bioethanol and natural resources: substrates, chemistry and engineered systems. CRC Press, Boca Raton, USA. ISBN: 978-0367572655

    Google Scholar 

  • Chamkalani A, Zendehboudi S, Hawboldt K (2020) A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects. Renew Sust Energ Rev 134:110143. First available on 29 September, 2020

    Article  Google Scholar 

  • Choi YJ, Park JH, Kim TY, Lee SY (2012) Metabolic engineering of Escherichia coli for the production of 1-propanol. Metab Eng 14(5):477–486

    Article  Google Scholar 

  • Choi KR, Jiao S, Lee SY (2020) Metabolic engineering strategies toward production of biofuels. Curr Opin Chem Biol 59:1–14

    Article  Google Scholar 

  • Chowdhury H, Loganathan B (2019) Third-generation biofuels from microalgae: a review. Curr Opin Green Sustain Chem 20:39–44

    Article  Google Scholar 

  • Ciervo M (2016) UE biobased policy: a critical economic-geographical point of view. Open Agric 1:131–143. https://doi.org/10.1515/opag-2016-0018

    Article  Google Scholar 

  • Cremonez PA, Feroldi M, de Araújo AV, Negreiros Borges M, Weiser Meier T, Feiden A, Gustavo Teleken J (2015) Biofuels in Brazilian aviation: current scenario and prospects. Renew Sust Energ Rev 43:1063–1072

    Article  Google Scholar 

  • Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N 2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8:389–395. www.atmos-chem-phys.net/8/389/2008/

    Article  Google Scholar 

  • Cuellar-Bermudez SP, Garcia-Perez JS, Rittmann BE, Parra-Saldivar R (2015) Photosynthetic bioenergy utilizing CO2: an approach on flue gases utilization for third generation biofuels. J Clean Prod 98:53–65

    Article  Google Scholar 

  • Darda S, Papalas T, Zabaniotou A (2019) Biofuels journey in Europe: currently the way to low carbon economy sustainability is still a challenge. J Clean Prod 208:575–588

    Article  Google Scholar 

  • Dave N, Selvaraj R, Varadavenkatesan T, Vinayagam R (2019) A critical review on production of bioethanol from macroalgal biomass. Algal Res 42:101606. ISSN 2211-9264, https://doi.org/10.1016/j.algal.2019.101606

  • Day JG, Thomas NJ, Achilles-Day UEM, Leakey RJG (2012) Early detection of protozoan grazers in algal biofuel culture. Bioresour Technol 114:715–719

    Article  Google Scholar 

  • Demirbas A (2010) Biodiesel: a realistic fuel alternative for diesel engines. Springer, London. ISBN-13 978-1849966962

    Google Scholar 

  • Demirbas A (2011) Biohydrogen: green energy and technology. Springer, London, UK. ISBN 978-1447122869

    Google Scholar 

  • Deng Y, Fong SS (2011) Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated lignocellulosic biomass to 1-propanol. Metab Eng 13(5):570–577

    Article  Google Scholar 

  • Deublein D, Steinhauser A (2010) Biogas from waste and renewable resources: an introduction, 2nd edn. Wiley-VCH, Weinheim. ISBN 978-3527327980

    Book  Google Scholar 

  • Divya D, Gopinath LR, Merlin Christy P (2015) A review on current aspects and diverse prospects for enhancing biogas production in sustainable means. Renew Sust Energ Rev 42:690–699

    Article  Google Scholar 

  • Elshahed MS (2010) Microbiological aspects of biofuel production: current status and future directions. J Adv Res 1(2):103–111

    Article  Google Scholar 

  • EPA (2015) What is sustainability? http://www.epa.gov/sustainability/basicinfo.htm. Accessed 28 Nov 2020

  • European Union (2009) Directive 2009/28/EC of the European Parliament and of the council on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/EC and 2003/30/EC. Off J Eur Union L 140:16–47. http://www.ecolex.org/ecolex/ledge/view/RecordDetails;jsessionid=81486EE7CA5E560409D392398C9539A0?id=LEX-FAOC088009&index=documents

    Google Scholar 

  • Fang Z (2013) Pretreatment techniques for biofuels and biorefineries. Springer, Berlin. ISBN 978-3642327346

    Book  Google Scholar 

  • Faraco V (2013) Lignocellulose conversion: enzymatic and microbial tools for bioethanol production. Springer, Berlin. ISBN 978-3642378607

    Book  Google Scholar 

  • Fasahati P, Woo HC, Liu JJ (2015) Industrial-scale bioethanol production from brown algae: effects of pretreatment processes on plant economics. Appl Energy 139:175–187

    Article  Google Scholar 

  • Fei Q, Guarnieri MT, Tao L, Laurens LML, Dowe N, Pienkos PT (2014) Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol Adv 32(3):596–614

    Article  Google Scholar 

  • Filimonau V, Mika M, PawlusiÅ„ski R (2018) Public attitudes to biofuel use in aviation: evidence from an emerging tourist market. J Clean Prod 172:3102–3110

    Article  Google Scholar 

  • Gainey B, Lawler B (2021) The role of alcohol biofuels in advanced combustion: an analysis. Fuel 283:118915

    Article  Google Scholar 

  • Galán G, Martín M, Grossmann IE (2019) Optimal production of renewable ETBE from lignocellulosic raw materials. Comput Aided Chem Eng 47:391–396

    Article  Google Scholar 

  • Gendy TS, El-Temtamy SA (2013) Commercialization potential aspects of microalgae for biofuel production: an overview. Egypt J Pet 22(1):43–51

    Article  Google Scholar 

  • Gong J, Zhang S, Cheng Y, Huang Z, Tang C, Zhang J (2015) A comparative study of n-propanol, propanal, acetone, and propane combustion in laminar flames. Proc Combust Inst 35(1):795–801

    Article  Google Scholar 

  • Graham JE, Clark ME, Nadler DC, Huffer S, Chokhawala HA, Rowland SE, Blanch HW, Clark DS, Robb FT (2011) Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment. Nat Commun 2:375. https://doi.org/10.1038/ncomms1373

    Article  Google Scholar 

  • Gupta VK, Tuohy MG (2013) Biofuel technologies: recent developments. Springer, Berlin. ISBN 978-3-642-34518-0

    Book  Google Scholar 

  • Harnisch F, Blei I, dos Santos TR, Möller M, Nilges P, Eilts P, Schröder U (2013) From the test-tube to the test-engine: assessing the suitability of prospective liquid biofuel compounds. RSC Adv 3:9594–9605

    Article  Google Scholar 

  • Hess M (2008) Thermoacidophilic proteins for biofuel production. Trends Microbiol 16(9):414–419. https://doi.org/10.1016/j.tim.2008.06.001. Epub 6 Aug 2008

    Article  Google Scholar 

  • Inderwildi OR, King DA (2009) Quo vadis biofuels? Energy Environ Sci 2:343–346. https://doi.org/10.1039/b822951c

    Article  Google Scholar 

  • International Air Transport Association (IATA) (2009) A global approach to reducing aviation emissions. http://www.iata.org/SiteCollectionDocuments/Documents/Global_Approach_Reducing_Emissions_251109web.pdf

  • Jambo SA, Abdulla R, Ravindra P (2016) A review on third generation bioethanol feedstock. Renew Sust Energ Rev 65:756–769

    Article  Google Scholar 

  • Jiang Z, Xiao T, Kuznetsov VL, Edwards PP (2010) Turning carbon dioxide into fuel. https://doi.org/10.1098/rsta.2010.0119 Published, http://rsta.royalsocietypublishing.org/content/368/1923/3343

  • Kamm B, Gruber PR, Kamm M (2010) Biorefineries – industrial processes and products: status quo and future directions. Wiley-VCH, Weinheim. ISBN 978-3527329533

    Google Scholar 

  • Kang L (2014) Biofuel experiences in China, Governance and Market Development Updates, the 6th Stakeholder Plenary Meeting of EBTP. European Biofuels Technology Platform, Brussels, 14–15 Oct 2014. http://www.biofuelstp.eu/spm6/docs/liping-kang.pdf

  • Kao P-M, Hsu B-M, Huang K-H, Tao C-W, Chang C-M, Ji W-T (2014) Biohydrogen production by immobilized co-culture of Clostridium butyricum and Rhodopseudomonas palustris. Energy Procedia 61:834–837

    Article  Google Scholar 

  • Katakojwala R, Mohan SV (2021) A critical view on the environmental sustainability of biorefinery systems. Curr Opin Green Sustain Chem 27:100392

    Article  Google Scholar 

  • Kim Y, Lee J, Ahn J (2019) Innovation towards sustainable technologies: a socio-technical perspective on accelerating transition to aviation biofuel. Technol Forecast Soc Chang 145:317–329

    Article  Google Scholar 

  • Kleinová A, CvengroÅ¡ová Z, Rimarcík J, Buzetzki E, Mikulec J, CvengroÅ¡ J (2012) Biofuels from algae. Procedia Eng 42:231–238

    Article  Google Scholar 

  • Koschelnik J, Epp M, Vogl W, Stadler P, Lackner M (2014) MFU/100ml: new measurement parameter for rapid enzymatic monitoring of fecal-associated indicator bacteria in water, 2014 water & health conference. UNC Water Institute, The University of North Carolina at Chapel Hill, USA

    Google Scholar 

  • Kottuparambil S, Thankamony RL, Agusti S (2019) Euglena as a potential natural source of value-added metabolites. A review. Algal Res 37:154–159

    Article  Google Scholar 

  • Kuckshinrichs W, Hake J-F (eds) (2014) Carbon capture, storage and use: technical, economic, environmental and societal perspectives. Springer, Cham. ISBN 978-3319119427

    Google Scholar 

  • Lackner M, Winter F, Palotas A (2013) Combustion: from basics to applications. Wiley-VCH, Weinheim. ISBN 978-3-527-33376-9

    Book  Google Scholar 

  • Leite GB, Hallenbeck PC (2014) Chapter 22 – Engineered cyanobacteria: research and application in bioenergy. In: Vijai G. Gupta, Maria Tuohy, Christian P. Kubicek, Jack Saddler and Feng Xu (eds) Bioenergy research: advances and applications, pp 389–406. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Linstrom PJ, Mallard WG (2015) NIST chemistry WebBook. NIST Standard Reference, Database Number 69, National Institute of Standards and Technology, Gaithersburg, 20899. http://webbook.nist.gov

  • Louis E, Arkoudeas P (2012) Lubricating aspects of automotive fuels In: Carmo JP, Ribeiro JE (eds) New advances in vehicular technology and automotive engineering. InTech, London, UK, 410 pp. https://doi.org/10.5772/2617. ISBN 978-953-51-0698-2

  • Lu X (2010) A perspective: photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnol Adv 28(6):742–746

    Article  Google Scholar 

  • Lü J, Sheahan C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4:2451–2466. https://doi.org/10.1039/C0EE00593B

    Article  Google Scholar 

  • Ma J, Xiong D, Yang Y (2017) Vapor intrusion risk of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME) and ethyl tert-butyl ether (ETBE): a modeling study. J Hazard Mater 332:10–18

    Article  Google Scholar 

  • Markiewicz MEP, Bergens SH (2010) A liquid electrolyte alkaline direct 2-propanol fuel cell. J Power Sources 195(21):7196–7201

    Article  Google Scholar 

  • Mazzoli R (2012) Development of microorganisms for cellulose-biofuel consolidated bioprocessings: metabolic engineers’ tricks. Comput Struct Biotechnol J 3(4):1–9

    Article  Google Scholar 

  • Miller K (2013) Archaeologists find earliest evidence of humans cooking with fire, discover. http://discovermagazine.com/2013/may/09-archaeologists-find-earliest-evidence-of-humans-cooking-with-fire. Accessed 4 May 2015

  • Minteer SD (2011) 11 – Biochemical production of other bioalcohols: biomethanol, biopropanol, bioglycerol, and bioethylene glycol. In: Rafael Luque, Juan Manuel Campelo, James Clark (eds) Handbook of biofuels production, pp 258–265. Woodhead Publishing, Duxford, UK

    Google Scholar 

  • Mohr A, Raman S (2013) Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels. Energy Policy 63:114–122

    Article  Google Scholar 

  • Moravvej Z, Makarem MA, Rahimpour MR (2019) Chapter 20: The fourth generation of biofuel. In: Second and third generation of feedstocks, pp 557–597. Elevier, Amsterdam, The Netherlands

    Google Scholar 

  • Muller EEL, Sheik AR, Wilmes P (2014) Lipid-based biofuel production from wastewater. Curr Opin Biotechnol 30:9–16

    Article  Google Scholar 

  • Neuling U, Kaltschmitt M (2018) Techno-economic and environmental analysis of aviation biofuels. Fuel Process Technol 171:54–69

    Article  Google Scholar 

  • Nozzi NE, Oliver JWK, Atsumi S (2013) Cyanobacteria as a platform for biofuel production. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2013.00007

  • NREL (2009) Biodiesel handling and use guide, 4th edn. National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Olah GA, Goeppert A, Surya Prakash GK (2006) Beyond oil and gas: the methanol economy. Wiley-VCH, Weinheim. ISBN 978-3527312757

    Google Scholar 

  • Panichelli L, Gnansounou E (2015) Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: key modelling choices. Renew Sust Energ Rev 42:344–360

    Article  Google Scholar 

  • Park J-H, Chandrasekhar K, Jeon B-H, Jang M, Liu Y, Kim S-H (2021) State-of-the-art technologies for continuous high-rate biohydrogen production. Bioresour Technol 320, Part A, 124304, ISSN 0960-8524, https://doi.org/10.1016/j.biortech.2020.124304

  • Parmar A, Singh NK, Pandey A, Gnansounou E, Madamwar D (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102(22):10163–10172

    Article  Google Scholar 

  • Peralta-Yahya PP, Ouellet M, Chan R, Mukhopadhyay A, Keasling JD, Lee TS (2011) Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2:483

    Article  Google Scholar 

  • Philbrook A, Alissandratos A, Easton CJ (2013) Biochemical processes for generating fuels and commodity chemicals from lignocellulosic biomass. http://cdn.intechopen.com/pdfs-wm/42494.pdf

  • Prussi M, O’Connell A, Lonza L (2019) Analysis of current aviation biofuel technical production potential in EU28. Biomass Bioenergy 130:105371

    Article  Google Scholar 

  • Pugazhendhi A, Mathimani T, Yoon J-J (2019) Biobutanol as a promising liquid fuel for the future – recent updates and perspectives. Fuel 253:637–646

    Article  Google Scholar 

  • Puricelli S, Cardellini G, Casadei S, Faedo D, van den Oever AEM, Grosso M (2021) A review on biofuels for light-duty vehicles in Europe. Renew Sust Energ 137:110398. ISSN 1364-0321, https://doi.org/10.1016/j.rser.2020.110398. Rev In press, corrected proof Available online 23 October 2020 Article 110398

  • Ray RC (2018) Bioethanol production from food crops: sustainable sources, interventions, and challenges. Academic Press, London, UK. ISBN: 978-0128137666

    Google Scholar 

  • Rogers JN, Rosenberg JN, Guzman BJ, Oh VH, Mimbela LE, Ghassemi A, Betenbaugh MJ, Oyler GA, Donohue MD (2014) A critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales. Algal Res 4:76–88

    Article  Google Scholar 

  • Romano MC, Anantharaman R, Arasto A, Ozcan DC, Ahn H, Dijkstra JW, Carbo M, Boavida D (2013) Application of advanced technologies for CO2 capture from industrial sources. Energy Procedia 37:7176–7185

    Article  Google Scholar 

  • Ruffing AM (2013) Metabolic engineering of hydrocarbon biosynthesis for biofuel production. http://cdn.intechopen.com/pdfs-wm/43693.pdf. Accessed 28 Nov 2020

  • Salles-Filho SLM, Cortez LAB, da Silveira JMFJ, Trindade SC (2016) Global bioethanol: evolution, risks, and uncertainties. Academic Press, London, UK. ISBN: 978-0128031414

    Google Scholar 

  • Savakis P, Hellingwerf KJ (2015) Engineering cyanobacteria for direct biofuel production from CO2. Curr Opin Biotechnol 33:8–14

    Article  Google Scholar 

  • Savvidis D, Sitnik L (2010) Investigation of three different mixtures of ecofuels used on a Perkins engine on a test bed. SAE technical paper 2010-01-1970. https://doi.org/10.4271/2010-01-1970

  • Schipper K, van der Gijp S, van der Stel R, Goetheer E (2013) New methodologies for the integration of power plants with algae ponds. Energy Procedia 37:6687–6695

    Article  Google Scholar 

  • Show K-Y, Yan Y, Lee D-J (2019) State of the art and challenges of biohydrogen from microalgae. Bioresour Technol 289:121747

    Article  Google Scholar 

  • Shukla M, Kumar S (2018) Algal growth in photosynthetic algal microbial fuel cell and its subsequent utilization for biofuels. Renew Sust Energ Rev 82(Part 1):402–414

    Article  Google Scholar 

  • Singh A, Olsen SI, Nigam PS (2011) A viable technology to generate third-generation biofuel. J Chem Technol Biotechnol 86:1349–1353

    Article  Google Scholar 

  • Sirajunnisa AR, Surendhiran D (2016) Algae – a quintessential and positive resource of bioethanol production: a comprehensive review. Renew Sust Energ Rev 66:248–267

    Article  Google Scholar 

  • Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53:29–38

    Article  Google Scholar 

  • Steinhoff FS, Karlberg M, Graeve M, Wulff A (2014) Cyanobacteria in Scandinavian coastal waters – a potential source for biofuels and fatty acids? Algal Res 5:42–51

    Article  Google Scholar 

  • Strong PJ, Kalyuzhnaya M, Clarke WP (2016) A methanotroph-based biorefinery: potential scenarios for generating multiple products from a single fermentation. Bioresour Technol 215:314–323

    Article  Google Scholar 

  • Swain PK (2017) Bio-butanol: a road forward for sustainable future fuel. LAP LAMBERT Academic Publishing, Saarbrücken. ISBN: 978-6202052726

    Google Scholar 

  • Syafiuddin A, Chong JH, Hadibarata T (2020) The current scenario and challenges of biodiesel production in Asian countries: a review. Bioresour Technol Rep 12:100608

    Article  Google Scholar 

  • Tabatabaei M, Aghbashlo M (2018) Biodiesel: from production to combustion. Springer, Cham. 978-3030009847

    Google Scholar 

  • Takahashi T (2021) Usefulness of a microalgal biorefinery in conversion to chemical products and recent technology in automatic evaluation of microalgae. Curr Opin Green Sustain Chem 27:100410

    Article  Google Scholar 

  • Tian G, Daniel R, Xu H (2011) DMF – a new biofuel candidate. http://cdn.intechopen.com/pdfs/20072/InTech-Dmf_a_new_biofuel_candidate.pdf

  • Tsai T-Y, Lo Y-C, Lee D-J (2020) Biobutanol production from lignocellulosic biomass using immobilized Clostridium acetobutylicum. Appl Energy 277:115531

    Article  Google Scholar 

  • Ullah K, Ahmad M, Sofia SVK, Lu P, Harvey A, Zafar M, Sultana S, Anyanwu CN (2014) Algal biomass as a global source of transport fuels: overview and development perspectives. Prog Nat Sci Mater Int 24(4):329–339

    Article  Google Scholar 

  • Viswanath DS, Ghosh TK, Prasad DHL, Dutt NVK, Rani KY (2007) Viscosity of liquids: theory, estimation, experiment, and data. Springer, Dordrecht

    MATH  Google Scholar 

  • Voelcker J (2014) 1.2 billion vehicles on world’s roads now, 2 billion by 2035. http://www.greencarreports.com/news/1093560_1-2-billion-vehicles-on-worlds-roads-now-2-billion-by-2035-report

  • Walther T, François JM (2016) Microbial production of propanol. Biotechnol Adv 34(5):984–996

    Article  Google Scholar 

  • Wang Q, Li R (2017) Research status of shale gas: a review. Renew Sust Energ Rev 74:715–720

    Article  Google Scholar 

  • Wang J, Yin Y (2018) Biohydrogen production from organic wastes. Springer, London, UK. ISBN: 978-9811351983

    Google Scholar 

  • Wang T, Li Y, Ma L, Wu C (2011) Biomass to dimethyl ether by gasification/synthesis technology – an alternative biofuel production route. Front Energy 5(3):330–339. 8 Sept 2010

    Google Scholar 

  • Webb A, Coates D (2012) Biofuels and biodiversity. Secretariat of the convention on biological diversity, montreal, technical series no 65, 69 pages. http://www.cbd.int/doc/publications/cbd-ts-65-en.pdf. Accessed 28 Nov 2020

  • Weinebeck A, Murrenhoff H (2013) Lubricity of new tailor-made fuels from biomass. In: Proceedings of the 13th Scandinavian international conference on fluid power – SICFP2013, Linköping

    Google Scholar 

  • What is MTBE? (2015) http://www.cancer.org/cancer/cancercauses/othercarcinogens/pollution/mtbe. Accessed 5 May 2015

  • Winchester N, McConnachie D, Wollersheim C, Waitz IA (2013) Economic and emissions impacts of renewable fuel goals for aviation in the US. Transp Res A Policy Pract 58:116–128

    Article  Google Scholar 

  • Yu D, Wang G, Xu F, Chen L (2012) Constitution and optimization on the performance of microbial fuel cell based on sulfate-reducing bacteria. Energy Procedia 16(Part C):1664–1670

    Article  Google Scholar 

  • Zabed HM, Akter S, Sahu JN (2019) Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renew Sust Energ Rev 105:105–128

    Article  Google Scholar 

  • Zah R, Böni H, Gauch M, Hischier R, Lehmann M, Wäger P (2007) Empa: life cycle assessment of energy products: environmental assessment of biofuels. https://www.osti.gov/etdeweb/servlets/purl/21208801. Accessed 28 Nov 2020

  • Zerrouki D, Henni A (2019) Outdoor microalgae cultivation for wastewater treatment. In: Gupta S.K., Bux F. (eds) Application of Microalgae in Wastewater Treatment. Springer, Chambridge, UK. https://doi.org/10.1007/978-3-030-13913-1_5

  • Zhang YH (2014) Production of biofuels and biochemicals by in vitro synthetic biosystems: opportunities and challenges. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2014.10.009. pii: S0734-9750(14)00158-X

  • Zhao B, Su Y (2014) Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew Sust Energ Rev 31:121–132

    Article  Google Scholar 

  • Zhiltsov SS (2018) Shale gas: ecology, politics, economy, Springer, London, UK. ISBN: 978-3319843636

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Lackner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lackner, M. (2022). Third-Generation Biofuels: Bacteria and Algae for Better Yield and Sustainability. In: Lackner, M., Sajjadi, B., Chen, WY. (eds) Handbook of Climate Change Mitigation and Adaptation. Springer, Cham. https://doi.org/10.1007/978-3-030-72579-2_90

Download citation

Publish with us

Policies and ethics