Skip to main content

Active Learning for Entity Alignment

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12656))

Included in the following conference series:

Abstract

In this work, we propose a novel framework for labeling entity alignments in knowledge graph datasets. Different strategies to select informative instances for the human labeler build the core of our framework. We illustrate how the labeling of entity alignments is different from assigning class labels to single instances and how these differences affect the labeling efficiency. Based on these considerations, we propose and evaluate different active and passive learning strategies. One of our main findings is that passive learning approaches, which can be efficiently precomputed, and deployed more easily, achieve performance comparable to the active learning strategies. In the spirit of reproducible research, we make our code available at https://github.com/mberr/ea_active_learning.

M. Berrendorf and E. Faerman—equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the frequently used DBP15k dataset is not suitable for our experiments due to its construction. Exclusive nodes in DBP15K are exactly those having a degree of one and are therefore trivial to identify.

References

  1. Bast, H., Björn, B., Haussmann, E.: Semantic search on text and knowledge bases. Found. Trends Inf. Retrieval 10(2–3), 119–271 (2016)

    Article  Google Scholar 

  2. Beluch, W.H., Genewein, T., Nürnberger, A., Köhler, J.M.: The power of ensembles for active learning in image classification. In: CVPR, pp. 9368–9377. IEEE Computer Society (2018)

    Google Scholar 

  3. Berrendorf, M., Faerman, E., Melnychuk, V., Tresp, V., Seidl, T.: Knowledge graph entity alignment with graph convolutional networks: lessons learned. arXiv preprint arXiv:1911.08342 (2019)

  4. Berrendorf, M., Faerman, E., Vermue, L., Tresp, V.: Interpretable and fair comparison of link prediction or entity alignment methods with adjusted mean rank. arXiv preprint arXiv:2002.06914 (2020)

  5. Cai, H., Zheng, V.W., Chang, K.C.C.: Active learning for graph embedding. arXiv preprint arXiv:1705.05085 (2017)

  6. Cao, Y., Liu, Z., Li, C., Liu, Z., Li, J., Chua, T.: Multi-channel graph neural network for entity alignment. In: ACL, vol. 1, pp. 1452–1461. ACL (2019)

    Google Scholar 

  7. Chen, M., Tian, Y., Yang, M., Zaniolo, C.: Multilingual knowledge graph embeddings for cross-lingual knowledge alignment. In: IJCAI, pp. 1511–1517. ijcai.org (2017)

    Google Scholar 

  8. Cortés, X., Serratosa, F.: Active-learning query strategies applied to select a graph node given a graph labelling. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 61–70. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38221-5_7

    Chapter  MATH  Google Scholar 

  9. Cortés, X., Serratosa, F., Solé-Ribalta, A.: Active graph matching based on pairwise probabilities between nodes. In: Gimel’farb, G., et al. (eds.) SSPR /SPR 2012. LNCS, vol. 7626, pp. 98–106. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34166-3_11

    Chapter  Google Scholar 

  10. Das, K., Samanta, S., Pal, M.: Study on centrality measures in social networks: a survey. Soc. Netw. Anal. Min. 8(1), 1–11 (2018). https://doi.org/10.1007/s13278-018-0493-2

    Article  Google Scholar 

  11. Dietz, L., Kotov, A., Meij, E.: Utilizing knowledge graphs for text-centric information retrieval. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, SIGIR 2018, pp. 1387–1390. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3209978.3210187

  12. Faerman, E., Borutta, F., Fountoulakis, K., Mahoney, M.W.: LASAGNE: locality and structure aware graph node embedding. In: WI, pp. 246–253. IEEE Computer Society (2018)

    Google Scholar 

  13. Faerman, E., Voggenreiter, O., Borutta, F., Emrich, T., Berrendorf, M., Schubert, M.: Graph alignment networks with node matching scores. In: Graph Representation Learning NeurIPS 2019 Workshop (2019)

    Google Scholar 

  14. Gal, Y.: Uncertainty in deep learning. Ph.D. thesis, University of Cambridge (2016)

    Google Scholar 

  15. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: ICML JMLR Workshop and Conference Proceedings, vol. 48, pp. 1050–1059. JMLR.org (2016)

    Google Scholar 

  16. Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. In: Proceedings of Machine Learning Research (ICML), vol. 70, pp. 1183–1192. PMLR (2017)

    Google Scholar 

  17. Gao, L., Yang, H., Zhou, C., Wu, J., Pan, S., Hu, Y.: Active discriminative network representation learning. In: IJCAI, pp. 2142–2148. ijcai.org (2018)

    Google Scholar 

  18. Geifman, Y., El-Yaniv, R.: Deep active learning over the long tail. arXiv preprint arXiv:1711.00941 (2017)

  19. Guo, L., Sun, Z., Hu, W.: Learning to exploit long-term relational dependencies in knowledge graphs. In: Proceedings of Machine Learning Research (ICML), vol. 97, pp. 2505–2514. PMLR (2019)

    Google Scholar 

  20. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  21. Houlsby, N., Huszár, F., Ghahramani, Z., Lengyel, M.: Bayesian active learning for classification and preference learning. arXiv preprint arXiv:1112.5745 (2011)

  22. Lewis, D.D., Catlett, J.: Heterogeneous uncertainty sampling for supervised learning. In: ICML, pp. 148–156. Morgan Kaufmann (1994)

    Google Scholar 

  23. Li, C., Cao, Y., Hou, L., Shi, J., Li, J., Chua, T.: Semi-supervised entity alignment via joint knowledge embedding model and cross-graph model. In: EMNLP/IJCNLP, vol. 1, pp. 2723–2732. ACL (2019)

    Google Scholar 

  24. Li, Y., Gu, C., Dullien, T., Vinyals, O., Kohli, P.: Graph matching networks for learning the similarity of graph structured objects. In: Proceedings of Machine Learning Research (ICML), vol. 97, pp. 3835–3845. PMLR (2019)

    Google Scholar 

  25. Mahdisoltani, F., Biega, J., Suchanek, F.M.: YAGO3: a knowledge base from multilingual wikipedias. In: CIDR (2015). www.cidrdb.org

  26. Malmi, E., Gionis, A., Terzi, E.: Active network alignment: a matching-based approach. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1687–1696 (2017)

    Google Scholar 

  27. Ostapuk, N., Yang, J., Cudré-Mauroux, P.: ActiveLink: deep active learning for link prediction in knowledge graphs. In: WWW, pp. 1398–1408. ACM (2019)

    Google Scholar 

  28. Pei, S., Yu, L., Hoehndorf, R., Zhang, X.: Semi-supervised entity alignment via knowledge graph embedding with awareness of degree difference. In: WWW, pp. 3130–3136. ACM (2019)

    Google Scholar 

  29. Puthal, D., Nepal, S., Paris, C., Ranjan, R., Chen, J.: Efficient algorithms for social network coverage and reach. In: BigData Congress, pp. 467–474. IEEE Computer Society (2015)

    Google Scholar 

  30. Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. In: ICLR (Poster). OpenReview.net (2018)

    Google Scholar 

  31. Settles, B.: Active learning literature survey. University of Wisconsin-Madison Department of Computer Sciences, Technical report (2009)

    Google Scholar 

  32. Shen, Y., Yun, H., Lipton, Z.C., Kronrod, Y., Anandkumar, A.: Deep active learning for named entity recognition. In: ICLR (Poster). OpenReview.net (2018)

    Google Scholar 

  33. Speer, R., Chin, J., Havasi, C.: Conceptnet 5.5: an open multilingual graph of general knowledge. In: AAAI, pp. 4444–4451. AAAI Press (2017)

    Google Scholar 

  34. Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 628–644. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_37

    Chapter  Google Scholar 

  35. Sun, Z., Hu, W., Zhang, Q., Qu, Y.: Bootstrapping entity alignment with knowledge graph embedding. In: IJCAI, pp. 4396–4402 (2018)

    Google Scholar 

  36. Sun, Z., et al.: Knowledge graph alignment network with gated multi-hop neighborhood aggregation. arXiv preprint arXiv:1911.08936 (2019)

  37. Trisedya, B.D., Qi, J., Zhang, R.: Entity alignment between knowledge graphs using attribute embeddings. In: AAAI, pp. 297–304. AAAI Press (2019)

    Google Scholar 

  38. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)

    Article  Google Scholar 

  39. Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L.: Cost-effective active learning for deep image classification. IEEE Trans. Circ. Syst. Video Techn. 27(12), 2591–2600 (2017)

    Article  Google Scholar 

  40. Wang, Z., Lv, Q., Lan, X., Zhang, Y.: Cross-lingual knowledge graph alignment via graph convolutional networks. In: EMNLP, pp. 349–357. ACL (2018)

    Google Scholar 

  41. Wu, Y., Xu, Y., Singh, A., Yang, Y., Dubrawski, A.: Active learning for graph neural networks via node feature propagation. arXiv preprint arXiv:1910.07567 (2019)

  42. Xu, K., et al.: Cross-lingual knowledge graph alignment via graph matching neural network. In: ACL, vol. 1, pp. 3156–3161. ACL (2019)

    Google Scholar 

  43. Yang, L., Zhang, Y., Chen, J., Zhang, S., Chen, D.Z.: Suggestive annotation: a deep active learning framework for biomedical image segmentation. In: Descoteaux, M., et al. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 399–407. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_46

    Chapter  Google Scholar 

  44. Zhang, Q., Sun, Z., Hu, W., Chen, M., Guo, L., Qu, Y.: Multi-view knowledge graph embedding for entity alignment. In: IJCAI, pp. 5429–5435. ijcai.org (2019)

    Google Scholar 

  45. Zhang, Y., Lease, M., Wallace, B.C.: Active discriminative text representation learning. In: AAAI, pp. 3386–3392. AAAI Press (2017)

    Google Scholar 

  46. Zhu, Q., Zhou, X., Wu, J., Tan, J., Guo, L.: Neighborhood-aware attentional representation for multilingual knowledge graphs. In: IJCAI, pp. 1943–1949. ijcai.org (2019)

    Google Scholar 

Download references

Acknowledgement

This work has been funded by the German Federal Ministry of Education and Research (BMBF) under Grant No. 01IS18036A. The authors of this work take full responsibilities for its content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Berrendorf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berrendorf, M., Faerman, E., Tresp, V. (2021). Active Learning for Entity Alignment. In: Hiemstra, D., Moens, MF., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds) Advances in Information Retrieval. ECIR 2021. Lecture Notes in Computer Science(), vol 12656. Springer, Cham. https://doi.org/10.1007/978-3-030-72113-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72113-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72112-1

  • Online ISBN: 978-3-030-72113-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics