Skip to main content

Preparing Ginkgo for AMD GPUs – A Testimonial on Porting CUDA Code to HIP

  • Conference paper
  • First Online:
Euro-Par 2020: Parallel Processing Workshops (Euro-Par 2020)

Abstract

With AMD reinforcing their ambition in the scientific high performance computing ecosystem, we extend the hardware scope of the Ginkgo linear algebra package to feature a HIP backend for AMD GPUs. In this paper, we report and discuss the porting effort from CUDA, the extension of the HIP framework to add missing features such as cooperative groups, the performance price of compiling HIP code for AMD architectures, and the design of a library providing native backends for NVIDIA and AMD GPUs while minimizing code duplication by using a shared code base.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A complex atomic_add involves separate real and imaginary atomic_add and thus is not strictly an atomic operation, as no ordering between the individual components of multiple complex atomic operations is guaranteed.

  2. 2.

    https://github.com/ginkgo-project/ginkgo-data/tree/V100_cuda_hip.

References

  1. The Top 500 List. https://www.top500.org/

  2. The US Exascale Computing Project (ECP). https://www.exascaleproject.org/

  3. AMD: HIP. https://github.com/ROCm-Developer-Tools/HIP

  4. Anzt, H., Dongarra, J., Flegar, G., Higham, N.J., Quintana-Ortí, E.S.: Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers. Concurrency Comput. Pract. Exp. 31(6), e4460 (2019)

    Article  Google Scholar 

  5. Danalis, A., et al.: The scalable heterogeneous computing (SHOC) benchmark suite. In: Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units, pp. 63–74 (2010). https://doi.org/10.1145/1735688.1735702. dl.acm.org

  6. Google. https://github.com/google/googletest

  7. Kuznetsov, E., Stegailov, V.: Porting CUDA-based molecular dynamics algorithms to AMD ROCm platform using hip framework: performance analysis. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2019. CCIS, vol. 1129, pp. 121–130. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36592-9_11

    Chapter  Google Scholar 

  8. NVIDIA Corp.: Whitepaper: NVIDIA TESLA V100 GPU Architecture (2017)

    Google Scholar 

  9. Roth, P.C.: Experiences with the Heterogeneouscompute Interface for Portability (HIP) on OLCF Summit, October 2019. https://www.olcf.ornl.gov/wp-content/uploads/2019/10/Roth-HIP-on-Summit-20191009.pdf

  10. SuiteSparse: Matrix Collection. https://sparse.tamu.edu. Accessed Jan 2020

  11. Sun, Y., et al.: Evaluating performance tradeoffs on the radeon open compute platform. In: 2018 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 209–218, April 2018. https://doi.org/10.1109/ISPASS.2018.00034

  12. Zubair, M., Warner, J., Wagner, D.: Optimization of a solver for computational materials and structures problems on NVIDIA Volta and AMD Instinct GPUs. In: 2019 IEEE/ACM 10th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA), pp. 9–16, November 2019. https://doi.org/10.1109/ScalA49573.2019.00007

Download references

Acknowledgements

This research was supported by the Exascale Computing Project (17-SC-20-SC) and the Helmholtz Impuls und Vernetzungsfond VH-NG-1241.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartwig Anzt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tsai, Y.M., Cojean, T., Ribizel, T., Anzt, H. (2021). Preparing Ginkgo for AMD GPUs – A Testimonial on Porting CUDA Code to HIP. In: Balis, B., et al. Euro-Par 2020: Parallel Processing Workshops. Euro-Par 2020. Lecture Notes in Computer Science(), vol 12480. Springer, Cham. https://doi.org/10.1007/978-3-030-71593-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71593-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71592-2

  • Online ISBN: 978-3-030-71593-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics