Skip to main content

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 21))

Abstract

We study the general problem of strengthening the logic of a given (partial) (non-deterministic) matrix with a set of axioms, using the idea of rexpansion. We obtain two characterization methods: a very general but not very effective one, and then an effective method which only applies under certain restrictions on the given semantics and the shape of the axioms. We show that this second method covers a myriad of examples in the literature. Finally, we illustrate how to obtain analytic multiple-conclusion calculi for the resulting logics.

This research was funded by FCT/MCTES through national funds and when applicable co-funded EU funds under the project UIDB/50008/2020. Work done under the scope of the CT4L initiative of SQIG at Instituto de Telecomunicações. The authors are indebted to the anonymous referees for their valuable feedback, which helped improve a previous version of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For simplicity, in this and other examples, we omit the usual brackets of set notation when describing the truth-tables.

  2. 2.

    Since not all the variables \(q_1,\dots ,q_n,r_1,\dots ,r_m\) need to occur in A, it may well happen that the subformula \({\copyright }(p_1,\dots ,p_k)\) ends up not appearing in the \(\Sigma ^d\)-simple formula B based on \({\copyright }\). For this reason, such a \(\Sigma ^d\)-simple formula can also be based on any available \(k'\)-place connective distinct from \({\copyright }\), as long as \(k'\ge k\) (more precisely, \(k'\) needs to be at least as big as the number of distinct variables \(p_j\) occurring in B).

  3. 3.

    Note that, in our definition, \(\Theta _\Gamma \) is not simply the union of the look-ahead sets of each formula in \(\Gamma \). We not only want \(\Theta _\Gamma \) to be closed for taking prefixes, but we want \(\varepsilon \in \Theta _\Gamma \) even if \(\Gamma =\emptyset \) (a rather pathological case).

References

  • Arieli, O., & Avron, A. (1998). The value of the four values. Artificial Intelligence, 102(1), 97–141.

    Article  Google Scholar 

  • Avron, A. (2005a). Non-deterministic matrices and modular semantics of rules. In J.-Y. Béziau (Ed.), Logica Universalis (pp. 149–167). Birkhäuser.

    Google Scholar 

  • Avron, A. (2005b). A non-deterministic view on non-classical negations. Studia Logica, 80(2–3), 159–194.

    Google Scholar 

  • Avron, A. (2007). Non-deterministic semantics for logics with a consistency operator. International Journal of Approximate Reasoning, 45(2), 271–287.

    Article  Google Scholar 

  • Avron, A., Ben-Naim, J., & Konikowska, B. (2007). Cut-free ordinary sequent calculi for logics having generalized finite-valued semantics. Logica Universalis, 1(1), 41–70.

    Article  Google Scholar 

  • Avron, A., Konikowska, B., & Zamansky, A. (2012). Modular construction of cut-free sequent calculi for paraconsistent logics. In Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science (LICS 2012) (pp. 85–94).

    Google Scholar 

  • Avron, A., Konikowska, B., & Zamansky, A. (2013). Cut-free sequent calculi for C-systems with generalized finite-valued semantics. Journal of Logic and Computation, 23(3), 517–540.

    Article  Google Scholar 

  • Avron, A., & Lev, I. (2005). Non-deterministic multiple-valued structures. Journal of Logic and Computation, 15(3), 241–261.

    Article  Google Scholar 

  • Avron, A., & Zamansky, A. (2011). Non-deterministic semantics for logical systems: A survey. In D. Gabbay & F. Guenthner (Eds.), Handbook of Philosophical Logic (Vol. 16, pp. 227–304). Springer.

    Google Scholar 

  • Avron, A., & Zohar, Y. (2019). Rexpansions of non-deterministic matrices and their applications in non-classical logics. Review of Symbolic Logic, 12(1), 173–200.

    Article  Google Scholar 

  • Baaz, M., Lahav, O., & Zamansky, A. (2013). Finite-valued semantics for canonical labelled calculi. Journal of Automated Reasoning, 51(4), 401–430.

    Article  Google Scholar 

  • Batens, D. (1980). Paraconsistent extensional propositional logics. Logique et Analyse, 23(90–91), 195–234.

    Google Scholar 

  • Batens, D. (2000). A survey of inconsistency-adaptive logics. In Frontiers of Paraconsistent Logic (pp. 49–73). Research Studies Press.

    Google Scholar 

  • Belnap, N. (1977a). How a computer should think. In G. Ryle (Ed.), Contemporary Aspects of Philosophy (Vol. 2, pp. 30–55), Episteme. Oriel Press.

    Google Scholar 

  • Belnap, N. (1977b). A useful four-valued logic. In G. Epstein & J. M. Dunn (Eds.), Modern Uses of Multiple-Valued Logic (Vol. 2, pp. 5–37), Episteme. Oriel Press.

    Google Scholar 

  • Caleiro, C., Carnielli, W., Rasga, J., & Sernadas, C. (2005). Fibring of logics as a universal construction. In D. Gabbay & F. Guenthner (Eds.), Handbook of Philosophical Logic (2nd ed., Vol. 13, pp. 123–187). Springer.

    Google Scholar 

  • Caleiro, C., & Marcelino, S. (2019). Analytic calculi for monadic PNmatrices. Logic, Language, Information and Computation (WoLLIC 2019), LNCS. Springer. http://sqig.math.ist.utl.pt/pub/CaleiroC/19-CM-axiomPNmatrices.pdf.

  • Caleiro, C., Marcelino, S., & Marcos, J. (2019). Combining fragments of classical logic: When are interaction principles needed? Soft Computing, 23(7), 2213–2231.

    Article  Google Scholar 

  • Caleiro, C., Marcos, J., & Volpe, M. (2015). Bivalent semantics, generalized compositionality and analytic classic-like tableaux for finite-valued logics. Theoretical Computer Science, 603, 84–110.

    Article  Google Scholar 

  • Carnielli, W., & Coniglio, M. (2016). Paraconsistent logic: consistency, contradiction and negation. In Logic, Epistemology, and the Unity of Science (Vol. 40). Springer.

    Google Scholar 

  • Carnielli, W., & Marcos, J. (1999). Limits for paraconsistent calculi. Notre Dame Journal of Formal Logic, 40, 375–390.

    Article  Google Scholar 

  • Carnielli, W., & Marcos, J. (2002). A taxonomy of C-systems. In W. Carnielli, M. Coniglio, & I. D’Ottaviano (Eds.), Paraconsistency: The Logical Way to the Inconsistent (Vol. 228, pp. 1–94), Lecture Notes in Pure and Applied Mathematics. Marcel Dekker.

    Google Scholar 

  • Ciabattoni, A., Lahav, O., Spendier, L., & Zamansky, A. (2014). Taming paraconsistent (and other) logics: An algorithmic approach. ACM Transactions on Computational Logic, 16(1), 5:1–5:23.

    Google Scholar 

  • Coniglio, M., & Golzio, A. (2019). Swap structures semantics for Ivlev-like modal logics. Soft Computing, 23(7), 2243–2254.

    Article  Google Scholar 

  • Gödel, K. (1932). Zum intuitionistischen aussagenkalkül. In Mathematisch - naturwissenschaftliche klasse (Vol. 69, pp. 65–66). Anzeiger Wien: Akademie der Wissenschaften.

    Google Scholar 

  • Gottwald, S. (2001). A Treatise on Many-Valued Logics (Vol. 9), Studies in Logic and Computation. Research Studies Press.

    Google Scholar 

  • Ivlev, J. (1988). A semantics for modal calculi. Bulletin of the Section of Logic, 17(3–4), 114–121.

    Google Scholar 

  • Kearns, J. (1981). Modal semantics without possible worlds. Journal of Symbolic Logic, 46(1), 77–86.

    Article  Google Scholar 

  • Kracht, M. (1998). On extensions of intermediate logics by strong negation. Journal of Philosophical Logic, 27, 49–73.

    Article  Google Scholar 

  • Marcelino, S., & Caleiro, C. (2016). Decidability and complexity of fibred logics without shared connectives. Logic Journal of the IGPL, 24(5), 673–707.

    Article  Google Scholar 

  • Marcelino, S., & Caleiro, C. (2017). Disjoint fibring of non-deterministic matrices. In R. de Queiroz & J. Kennedy (Eds.), Logic, Language, Information and Computation (WoLLIC 2017) (Vol. 10388, pp. 242–255), LNCS. Springer.

    Google Scholar 

  • Marcelino, S., & Caleiro, C. (2019). Axiomatizing non-deterministic many-valued generalized consequence relations. Synthese,. https://doi.org/10.1007/s11229-019-02142-8.

    Article  Google Scholar 

  • Nelson, D. (1948). Constructible falsity. Journal of Symbolic Logic, 14, 247–257.

    Google Scholar 

  • Odintsov, S. (2008). Constructive Negations and Paraconsistency (Vol. 26), Trends in Logic. Netherlands: Springer.

    Google Scholar 

  • Scott, D. (1974). Completeness and axiomatizability in many-valued logic. In L. Henkin, J. Addison, C. Chang, W. Craig, D. Scott, & R. Vaught (Eds.), Proceedings of the Tarski Symposium (Vol. XXV, pp. 411–435), Proceedings of Symposia in Pure Mathematics. American Mathematical Society.

    Google Scholar 

  • Shoesmith, D., & Smiley, T. (1978). Multiple-Conclusion Logic. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Vakarelov, D. (1977). Notes on N-lattices and constructive logic with strong negation. Studia Logica: An International Journal for Symbolic Logic, 36(1/2), 109–125.

    Article  Google Scholar 

  • Wójcicki, R. (1998). Theory of Logical Calculi (Vol. 199), Synthese Library. Kluwer.

    Google Scholar 

  • Wroński, A. (1974). On the cardinality of matrices strongly adequate for the intuitionistic propositional logic. Reports on Mathematical Logic, 3, 67–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Caleiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caleiro, C., Marcelino, S. (2021). On Axioms and Rexpansions. In: Arieli, O., Zamansky, A. (eds) Arnon Avron on Semantics and Proof Theory of Non-Classical Logics. Outstanding Contributions to Logic, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-030-71258-7_3

Download citation

Publish with us

Policies and ethics