Skip to main content

The Role of Glycosylation in Inflammatory Diseases

  • Chapter
  • First Online:
The Role of Glycosylation in Health and Disease

Abstract

The diversity of glycan presentation in a cell, tissue and organism is enormous, which reflects the huge amount of important biological information encoded by the glycome which has not been fully understood. A compelling body of evidence has been highlighting the fundamental role of glycans in immunity, such as in development, and in major inflammatory processes such as inflammatory bowel disease, systemic lupus erythematosus and other autoimmune disorders. Glycans play an instrumental role in the immune response, integrating the canonical circuits that regulate innate and adaptive immune responses. The relevance of glycosylation in immunity is demonstrated by the role of glycans as important danger-associated molecular patterns and pathogen-associated molecular patterns associated with the discrimination between self and non-self; also as important regulators of the threshold of T cell activation, modulating receptors signalling and the activity of both T and other immune cells. In addition, glycans are important determinants that regulate the dynamic crosstalk between the microbiome and immune response. In this chapter, the essential role of glycans in the immunopathogenesis of inflammatory disorders will be presented and its potential clinical applications (diagnosis, prognosis and therapeutics) will be highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ablasser A, Chen ZJ (2019) cGAS in action: expanding roles in immunity and inflammation. Science 363:eaat8657

    Article  CAS  PubMed  Google Scholar 

  • Afzali AM, Müntefering T, Wiendl H et al (2018) Skeletal muscle cells actively shape (auto)immune responses. Autoimmun Rev 17:518–529

    Article  CAS  PubMed  Google Scholar 

  • Alves I, Pinto V, Santos-Pereira B et al (2020) AB0123 changes in cellular glycosylation as a key factor in the immunopathogenesis of systemic lupus erythematosus. Ann Rheum Dis 79BMJ Publishing Group Ltd:1361–1362

    Article  Google Scholar 

  • Amin R, Mourcin F, Uhel F et al (2015) DC-SIGN-expressing macrophages trigger activation of mannosylated IgM B-cell receptor in follicular lymphoma. Blood 126:1911–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annese V, Piepoli A, Perri F et al (2004) Anti-Saccharomyces cerevisiae mannan antibodies in inflammatory bowel disease: comparison of different assays and correlation with clinical features. Aliment Pharmacol Ther 20:1143–1152

    Article  CAS  PubMed  Google Scholar 

  • Araujo L, Khim P, Mkhikian H et al (2017) Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation. Elife 6

    Google Scholar 

  • Arnold JN, Wormald MR, Sim RB et al (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50

    Article  CAS  PubMed  Google Scholar 

  • Bain CC, Mowat AM (2014) Macrophages in intestinal homeostasis and inflammation. Immunol Rev 260:102–117. https://doi.org/10.1111/imr.12192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbosa JA, Santos-Aguado J, Mentzer SJ et al (1987) Site-directed mutagenesis of class I HLA genes. Role of glycosylation in surface expression and functional recognition. J Exp Med 166:1329–1350. https://doi.org/10.1084/jem.166.5.1329

    Article  CAS  PubMed  Google Scholar 

  • Bax M, García-Vallejo JJ, Jang-Lee J et al (2007) Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins. J Immunol 179:8216–8224

    Article  CAS  PubMed  Google Scholar 

  • Beccaria CG, Amezcua Vesely MC, Fiocca Vernengo F et al (2018) Galectin-3 deficiency drives lupus-like disease by promoting spontaneous germinal centers formation via IFN-γ. Nat Commun 9:1628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bogdanos DP, Rigopoulou EI, Smyk DS et al (2011) Diagnostic value, clinical utility and pathogenic significance of reactivity to the molecular targets of Crohn’s disease specific-pancreatic autoantibodies. Autoimmun Rev 11:143–148

    Article  CAS  PubMed  Google Scholar 

  • Broccolini A, Gidaro T, Morosetti R, Mirabella M (2009) Hereditary inclusion-body myopathy: clues on pathogenesis and possible therapy. Muscle Nerve 40:340–349. https://doi.org/10.1002/mus.21385

    Article  CAS  PubMed  Google Scholar 

  • Brown GD, Willment JA, Whitehead L (2018) C-type lectins in immunity and homeostasis. Nat Rev Immunol 18:374–389

    Article  CAS  PubMed  Google Scholar 

  • Burrows PD, Stephan RP, Wang Y-H et al (2002) The transient expression of pre-B cell receptors governs B cell development. Semin Immunol 14:343–349

    Article  CAS  PubMed  Google Scholar 

  • Cabral J, Hanley SA, Gerlach JQ et al (2017) Distinctive surface glycosylation patterns associated with mouse and human CD4+ regulatory T cells and their suppressive function. Front Immunol 8:987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai M, Zhou T, Wang X et al (2016) DC-SIGN expression on podocytes and its role in inflammatory immune response of lupus nephritis. Clin Exp Immunol 183:317–325

    Article  CAS  PubMed  Google Scholar 

  • Chen H-L, Li CF, Grigorian A et al (2009a) T cell receptor signaling co-regulates multiple Golgi genes to enhance N-glycan branching. J Biol Chem 284:32454–32461. https://doi.org/10.1074/jbc.M109.023630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H-Y, Fermin A, Vardhana S et al (2009b) Galectin-3 negatively regulates TCR-mediated CD4+ T-cell activation at the immunological synapse. Proc Natl Acad Sci U S A 106:14496–14501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H-Y, Wu Y-F, Chou F-C et al (2020) Intracellular Galectin-9enhances proximal TCR signaling and potentiates autoimmune diseases. J Immunol 204:1158–1172

    Article  CAS  PubMed  Google Scholar 

  • Chui D, Sellakumar G, Green R et al (2001) Genetic remodeling of protein glycosylation in vivo induces autoimmune disease. Proc Natl Acad Sci U S A 98:1142–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clerc F, Novokmet M, Dotz V et al (2018) Plasma N-glycan signatures are associated with features of inflammatory bowel diseases. Gastroenterology 155:829–843

    Article  CAS  PubMed  Google Scholar 

  • Comber JD, Philip R (2014) MHC class I antigen presentation and implications for developing a new generation of therapeutic vaccines. Ther Adv Vaccine 2:77–89

    Article  CAS  Google Scholar 

  • Connelly MA, Otvos JD, Shalaurova I et al (2017) GlycA, a novel biomarker of systemic inflammation and cardiovascular disease risk. J Transl Med 15:219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daniels MA, Devine L, Miller JD et al (2001) CD8 binding to MHC class I molecules is influenced by T cell maturation and glycosylation. Immunity 15:1051–1061

    Article  CAS  PubMed  Google Scholar 

  • Demetriou M, Granovsky M, Quaggin S, Dennis JW (2001) Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409:733–739

    Article  CAS  PubMed  Google Scholar 

  • den Haan JMM, Arens R, van Zelm MC (2014) The activation of the adaptive immune system: cross-talk between antigen-presenting cells, T cells and B cells. Immunol Lett 162:103–112

    Article  CAS  Google Scholar 

  • Dias AM, Dourado J, Lago P et al (2014) Dysregulation of T cell receptor N-glycosylation: a molecular mechanism involved in ulcerative colitis. Hum Mol Genet 23:2416–2427

    Article  CAS  PubMed  Google Scholar 

  • Dias AM, Correia A, Pereira MS et al (2018a) Metabolic control of T cell immune response through glycans in inflammatory bowel disease. Proc Natl Acad Sci U S A 115:E4651–E4660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dias AM, Pereira MS, Padrão NA et al (2018b) Glycans as critical regulators of gut immunity in homeostasis and disease. Cell Immunol 333:9–18

    Article  PubMed  CAS  Google Scholar 

  • Dierckx T, Verstockt B, Vermeire S, van Weyenbergh J (2019) GlycA, a nuclear magnetic resonance spectroscopy measure for protein glycosylation, is a viable biomarker for disease activity in IBD. J Crohns Colitis 13:389–394

    Article  PubMed  Google Scholar 

  • Drake PM, Stock CM, Nathan JK et al (2009) Polysialic acid governs T-cell development by regulating progenitor access to the thymus. Proc Natl Acad Sci U S A 106:11995–12000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubé R, Rook GA, Steele J et al (1990) Agalactosyl IgG in inflammatory bowel disease: correlation with C-reactive protein. Gut 31:431–434

    Article  PubMed  PubMed Central  Google Scholar 

  • Ercan A, Cui J, Chatterton DEW et al (2010) Aberrant IgG galactosylation precedes disease onset, correlates with disease activity, and is prevalent in autoantibodies in rheumatoid arthritis. Arthritis Rheum 62:2239–2248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espeli M, Mancini SJC, Breton C et al (2009) Impaired B-cell development at the pre-BII-cell stage in galectin-1–deficient mice due to inefficient pre-BII/stromal cell interactions. Blood 113:5878–5886

    Article  CAS  PubMed  Google Scholar 

  • Feagan BG, Rutgeerts P, Sands BE et al (2013) Vedolizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med 369:699–710

    Article  CAS  PubMed  Google Scholar 

  • Ferwerda B, Ferwerda G, Plantinga TS et al (2009) Human dectin-1deficiency and mucocutaneous fungal infections. N Engl J Med 361:1760. https://doi.org/10.1056/NEJMOA0901053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frol’ová L, Smetana K, Borovská D et al (2009) Detection of galectin-3 in patients with inflammatory bowel diseases: new serum marker of active forms of IBD? Inflamm Res 58:503–512. https://doi.org/10.1007/s00011-009-0016-8

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Wei B, Wen T et al (2011) Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice. J Clin Invest 121:1657–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galvan M, Tsuboi S, Fukuda M, Baum LG (2000) Expression of a specific glycosyltransferase enzyme regulates T cell death mediated by galectin-1. J Biol Chem 275:16730–16737

    Article  CAS  PubMed  Google Scholar 

  • Gauthier L, Smith KJ, Pyrdol J et al (1998) Expression and crystallization of the complex of HLA-DR2 (DRA, DRB1*1501) and an immunodominant peptide of human myelin basic protein. Proc Natl Acad Sci U S A 95:11828–11833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gauthier L, Rossi B, Roux F et al (2002) Galectin-1 is a stromal cell ligand of the pre-B cell receptor (BCR) implicated in synapse formation between pre-B and stromal cells and in pre-BCR triggering. Proc Natl Acad Sci U S A 99:13014–13019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon FH, Lai CW, Hamilton MI et al (2001) A randomized placebo-controlled trial of a humanized monoclonal antibody to alpha4 integrin in active Crohn’s disease. Gastroenterology 121:268–274

    Article  CAS  PubMed  Google Scholar 

  • Gordon FH, Hamilton MI, Donoghue S et al (2002) A pilot study of treatment of active ulcerative colitis with natalizumab, a humanized monoclonal antibody to alpha-4 integrin. Aliment Pharmacol Ther 16:699–705

    Article  CAS  PubMed  Google Scholar 

  • Goto Y, Obata T, Kunisawa J et al (2014) Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 345:1254009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grigorian A, Lee S-U, Tian W et al (2007) Control of T cell-mediated autoimmunity by metabolite flux to N-glycan biosynthesis. J Biol Chem 282:20027–20035

    Article  CAS  PubMed  Google Scholar 

  • Grigorian A, Torossian S, Demetriou M (2009) T-cell growth, cell surface organization, and the galectin-glycoprotein lattice. Immunol Rev 230:232–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanić M, Trbojević-Akmačić I, Lauc G (2019) Inflammatory bowel disease – glycomics perspective. Biochim Biophys Acta Gen Subj 1863:1595–1601

    Google Scholar 

  • Hardy RR, Hayakawa K (2001) B cell development pathways. Annu Rev Immunol 19:595–621

    Article  CAS  PubMed  Google Scholar 

  • Hewitt EW (2003) The MHC class I antigen presentation pathway: strategies for viral immune evasion. Immunology 110:163–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hokama A, Mizoguchi E, Sugimoto K et al (2004) Induced reactivity of intestinal CD4(+) T cells with an epithelial cell lectin, galectin-4, contributes to exacerbation of intestinal inflammation. Immunity 20:681–693

    Article  CAS  PubMed  Google Scholar 

  • Hollmig ST, Ariizumi K, Cruz PD (2009) Recognition of non-self-polysaccharides by C-type lectin receptors dectin-1 and dectin-2. Glycobiology 19:568–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118

    Article  CAS  PubMed  Google Scholar 

  • Hovhannisyan Z, Treatman J, Littman DR, Mayer L (2011) Characterization of interleukin-17-producing regulatory T cells in inflamed intestinal mucosa from patients with inflammatory bowel diseases. Gastroenterology 140:957–965

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327:291–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kansas G (1996) Selectins and their ligands: current concepts and controversies. Blood 88:3259–3287

    Article  CAS  PubMed  Google Scholar 

  • Kaplan GG, Ng SC (2017) Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology 152:313–321.e2

    Article  PubMed  Google Scholar 

  • Koch U, Radtke F (2011) Mechanisms of T cell development and transformation. Annu Rev Cell Dev Biol 27:539–562

    Article  CAS  PubMed  Google Scholar 

  • Koch U, Lacombe TA, Holland D et al (2001) Subversion of the T/B lineage decision in the thymus by lunatic fringe-mediated inhibition of Notch-1. Immunity 15:225–236

    Article  CAS  PubMed  Google Scholar 

  • Koropatkin NM, Cameron EA, Martens EC (2012) How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol 10:323–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson JMH, Karlsson H, Crespo JG et al (2011) Altered O-glycosylation profile of MUC2 mucin occurs in active ulcerative colitis and is associated with increased inflammation. Inflamm Bowel Dis 17:2299–2307

    Article  PubMed  Google Scholar 

  • Lee MY, Jeon JW, Sievers C, Allen CT (2020) Antigen processing and presentation in cancer immunotherapy. J Immunother Cancer 8:e001111

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis ZT, Totten SM, Smilowitz JT et al (2015) Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome 3:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Lhotta K, Würzner R, König P (1999) Glomerular deposition of mannose-binding lectin in human glomerulonephritis. Nephrol Dial Transplant 14:881–886

    Article  CAS  PubMed  Google Scholar 

  • Li X, Conklin L, Alex P (2008) New serological biomarkers of inflammatory bowel disease. World J Gastroenterol 14:5115–5124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Liu Q, Pang Y et al (2012) Core fucosylation of μ heavy chains regulates assembly and intracellular signaling of precursor B cell receptors. J Biol Chem 287:2500–2508

    Article  CAS  PubMed  Google Scholar 

  • Lood C, Allhorn M, Lood R et al (2012) IgG glycan hydrolysis by endoglycosidase S diminishes the proinflammatory properties of immune complexes from patients with systemic lupus erythematosus: a possible new treatment? Arthritis Rheum 64:2698–2706

    Article  CAS  PubMed  Google Scholar 

  • Lugo-Villarino G, Troegeler A, Balboa L et al (2018) The C-type lectin receptor DC-SIGN has an anti-inflammatory role in human M(IL-4) macrophages in response to Mycobacterium tuberculosis. Front Immunol 9:1123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma BY, Mikolajczak SA, Yoshida T et al (2004) CD28 T cell costimulatory receptor function is negatively regulated by N-linked carbohydrates. Biochem Biophys Res Commun 317:60–67

    Article  CAS  PubMed  Google Scholar 

  • Madireddi S, Eun S-Y, Lee S-W et al (2014) Galectin-9 controls the therapeutic activity of 4-1BB-targeting antibodies. J Exp Med 211:1433–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malicdan MCV, Noguchi S, Hayashi YK et al (2009) Prophylactic treatment with sialic acid metabolites precludes the development of the myopathic phenotype in the DMRV-hIBM mouse model. Nat Med 15:690–695

    Article  CAS  PubMed  Google Scholar 

  • Marth JD, Grewal PK (2008) Mammalian glycosylation in immunity. Nat Rev Immunol 8:874–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMorran BJ, McCarthy FE, Gibbs EM et al (2016) Differentiation-related glycan epitopes identify discrete domains of the muscle glycocalyx. Glycobiology 26:1120–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesin L, Ersching J, Victora GD (2016) Germinal center B cell dynamics. Immunity 45:471–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JFAP (2020) The function of the thymus and its impact on modern medicine. Science (80-) 369:eaba2429

    Article  CAS  Google Scholar 

  • Miller FW, Lamb JA, Schmidt J, Nagaraju K (2018) Risk factors and disease mechanisms in myositis. Nat Rev Rheumatol 14:255–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mkhikian H, Grigorian A, Li CF et al (2011) Genetics and the environment converge to dysregulate N-glycosylation in multiple sclerosis. Nat Commun 2:334

    Article  PubMed  CAS  Google Scholar 

  • Modenutti CP, Capurro JIB, Di Lella S, Martí MA (2019) The structural biology of galectin-ligand recognition: current advances in modeling tools, protein engineering, and inhibitor design. Front Chem 7:823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Momozawa Y, Dmitrieva J, Théâtre E et al (2018) IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes. Nat Commun 9:2427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moody AM, Chui D, Reche PA et al (2001) Developmentally regulated glycosylation of the CD8alphabeta coreceptor stalk modulates ligand binding. Cell 107:501–512

    Article  CAS  PubMed  Google Scholar 

  • Morgan R, Gao G, Pawling J et al (2004) N-acetylglucosaminyltransferase V (Mgat5)-mediated N-glycosylation negatively regulates Th1 cytokine production by T cells. J Immunol 173:7200–7208

    Article  CAS  PubMed  Google Scholar 

  • Mortales C-L, Lee S-U, Demetriou M (2020) N-glycan branching is required for development of mature B cells. J Immunol 205:630–636

    Article  CAS  PubMed  Google Scholar 

  • Mourcin F, Breton C, Tellier J et al (2011) Galectin-1–expressing stromal cells constitute a specific niche for pre-BII cell development in mouse bone marrow. Blood 117:6552–6561

    Article  CAS  PubMed  Google Scholar 

  • Nakayama K, Wakamatsu K, Fujii H et al (2019) Core fucose is essential glycosylation for CD14-dependent Toll-like receptor 4 and Toll-like receptor 2 signalling in macrophages. J Biochem 165:227–237

    Article  CAS  PubMed  Google Scholar 

  • Neefjes J, Jongsma MLM, Paul P, Bakke O (2011) Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 11:823–836

    Article  CAS  PubMed  Google Scholar 

  • Neill DR, Flynn RJ (2018) Origins and evolution of innate lymphoid cells: Wardens of barrier immunity. Parasite Immunol 40:e12436

    Article  Google Scholar 

  • Nemazee D (2017) Mechanisms of central tolerance for B cells. Nat Rev Immunol 17:281–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nio-Kobayashi J (2018) Histological mapping and subtype-specific functions of galectins in health and disease. Trend Glycosci Glycotechnol 30:SJ47–SJ53

    Article  Google Scholar 

  • Obino D, Fetler L, Soza A et al (2018) Galectin-8favors the presentation of surface-tethered antigens by stabilizing the B cell immune synapse. Cell Rep 25:3110–3122.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira-de-Abreu E, Silva-dos-Santos D, Lepletier A et al (2018) Lack of galectin-3disrupts thymus homeostasis in association to increase of local and systemic glucocorticoid levels and steroidogenic machinery. Front Endocrinol (Lausanne) 9:365

    Article  Google Scholar 

  • Omenetti S, Pizarro TT (2015) The Treg/Th17 axis: adynamic balance regulated by the gut microbiome. Front Immunol 6:639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ostankovitch M, Altrich-Vanlith M, Robila V, Engelhard VH (2009) N-glycosylation enhances presentation of a MHC class I-restricted epitope from tyrosinase. J Immunol 182:4830–4835

    Article  CAS  PubMed  Google Scholar 

  • Paclik D, Berndt U, Guzy C et al (2008) Galectin-2 induces apoptosis of lamina propria T lymphocytes and ameliorates acute and chronic experimental colitis in mice. J Mol Med (Berl) 86:1395–1406

    Article  CAS  Google Scholar 

  • Parsons MW, Li L, Wallace AM et al (2014) Dectin-2regulates the effector phase of house dust mite–elicited pulmonary inflammation independently from its role in sensitization. J Immunol 192:1361–1371

    Article  CAS  PubMed  Google Scholar 

  • Pereira MS, Alves I, Vicente M et al (2018a) Glycans as key checkpoints of T cell activity and function. Front Immunol 9:2754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pereira MS, Maia L, Azevedo LF et al (2018b) A [Glyco]biomarker that predicts failure to standard therapy in ulcerative colitis patients. J Crohns Colitis 13:39–49

    Article  Google Scholar 

  • Pereira MS, Durães C, Catarino TA et al (2020) Genetic variants of the MGAT5gene are functionally implicated in the modulation of T cells glycosylation and plasma IgG glycome composition in ulcerative colitis. Clin Transl Gastroenterol 11:e00166

    Article  PubMed  PubMed Central  Google Scholar 

  • Perillo NL, Uittenbogaart CH, Nguyen JT, Baum LG (1997) Galectin-1, an endogenous lectin produced by thymic epithelial cells, induces apoptosis of human thymocytes. J Exp Med 185:1851–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrosyan A, Cravedi P, Villani V et al (2019) A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier. Nat Commun 10:3656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pillai S, Cariappa A (2009) The follicular versus marginal zone B lymphocyte cell fate decision. Nat Rev Immunol 9:767–777

    Article  CAS  PubMed  Google Scholar 

  • Podolsky DK (2002) Inflammatory bowel disease. N Engl J Med 347:417–429

    Article  CAS  PubMed  Google Scholar 

  • Rabinovich GA, Toscano MA (2009) Turning “sweet” on immunity: galectin–glycan interactions in immune tolerance and inflammation. Nat Rev Immunol 9:338–352

    Article  CAS  PubMed  Google Scholar 

  • Rampal R, Li ASY, Moloney DJ et al (2005) Lunatic fringe, manic fringe, and radical fringe recognize similar specificity determinants in O-fucosylated epidermal growth factor-like repeats. J Biol Chem 280:42454–42463

    Article  CAS  PubMed  Google Scholar 

  • Rausch P, Rehman A, Künzel S et al (2011) Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype. Proc Natl Acad Sci U S A 108:19030–19035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravcheev DA, Thiele I (2017) Comparative genomic analysis of the human gut microbiome reveals a broad distribution of metabolic pathways for the degradation of host-synthetized mucin glycans and utilization of mucin-derived monosaccharides. Front Genet 8:111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reily C, Stewart TJ, Renfrow MB, Novak J (2019) Glycosylation in health and disease. Nat Rev Nephrol 15:346–366

    Article  PubMed  PubMed Central  Google Scholar 

  • Roche PA, Furuta K (2015) The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol 15:203–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • RodrÍguez E, Schetters STT, van Kooyk Y (2018) The tumour glyco-code as a novel immune checkpoint for immunotherapy. Nat Rev Immunol 18:204–211

    Article  PubMed  CAS  Google Scholar 

  • Rossi FMV, Corbel SY, Merzaban JS et al (2005) Recruitment of adult thymic progenitors is regulated by P-selectin and its ligand PSGL-1. Nat Immunol 6:626–634

    Article  CAS  PubMed  Google Scholar 

  • Ruel J, Ruane D, Mehandru S et al (2014) IBD across the age spectrum: is it the same disease? Nat Rev Gastroenterol Hepatol 11:88–98

    Article  PubMed  Google Scholar 

  • Ryan SO, Cobb BA (2012) Host glycans and antigen presentation. Microbes Infect 14:894–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan SO, Bonomo JA, Zhao F, Cobb BA (2011) MHCII glycosylation modulates Bacteroides Fragiliscarbohydrate antigen presentation. J Exp Med 208:1041–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvatore S, Heuschkel R, Tomlin S et al (2000) A pilot study of N-acetyl glucosamine, a nutritional substrate for glycosaminoglycan synthesis, in paediatric chronic inflammatory bowel disease. Aliment Pharmacol Ther 14:1567–1579

    Article  CAS  PubMed  Google Scholar 

  • Samardzic T, Marinkovic D, Danzer C-P et al (2002) Reduction of marginal zone B cells in CD22-deficient mice. Eur J Immunol 32:561–567

    Article  CAS  PubMed  Google Scholar 

  • Sandborn WJ, Feagan BG, Rutgeerts P et al (2013) Vedolizumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med 369:711–721

    Article  CAS  PubMed  Google Scholar 

  • Schatz DG, Ji Y (2011) Recombination centres and the orchestration of V(D)J recombination. Nat Rev Immunol 11:251–263

    Article  CAS  PubMed  Google Scholar 

  • Schnaar RL (2016) Glycobiology simplified: diverse roles of glycan recognition in inflammation. J Leukoc Biol 99:825–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seidelin JB, Vainer B, Horn T, Nielsen OH (1998) Circulating L-selectin levels and endothelial CD34 expression in inflammatory bowel disease. Am J Gastroenterol 93:1854–1859

    Article  CAS  PubMed  Google Scholar 

  • Shah DK, Zúñiga-Pflücker JC (2014) An overview of the intrathymic intricacies of T cell development. J Immunol 192:4017–4023

    Article  CAS  PubMed  Google Scholar 

  • Shih H-Y, Hao B, Krangel MS (2011) Orchestrating T-cell receptor α gene assembly through changes in chromatin structure and organization. Immunol Res 49:192–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinzaki S, Iijima H, Nakagawa T et al (2008) IgG oligosaccharide alterations are a novel diagnostic marker for disease activity and the clinical course of inflammatory bowel disease. Am J Gastroenterol 103:1173–1181

    Article  PubMed  Google Scholar 

  • Shinzaki S, Ishii M, Fujii H et al (2016) N-Acetylglucosaminyltransferase V exacerbates murine colitis with macrophage dysfunction and enhances colitic tumorigenesis. J Gastroenterol 51:357–369

    Article  CAS  PubMed  Google Scholar 

  • Šimurina M, de Haan N, Vučković F et al (2018) Glycosylation of immunoglobulin G associates with clinical features of inflammatory bowel diseases. Gastroenterology 154:1320–1333.e10

    Article  PubMed  CAS  Google Scholar 

  • Song Y, Kumar V, Wei H-X et al (2016) Lunatic, manic, and radical fringe each promote T and B cell development. J Immunol 196:232–243

    Article  CAS  PubMed  Google Scholar 

  • Sperandio M (2006) Selectins and glycosyltransferases in leukocyte rolling in vivo. FEBS J 273:4377–4389

    Article  CAS  PubMed  Google Scholar 

  • Stanley P, Guidos CJ (2009) Regulation of Notch signaling during T- and B-cell development by O -fucose glycans. Immunol Rev 230:201–215

    Article  CAS  PubMed  Google Scholar 

  • Storni T, Bachmann MF (2004) Loading of MHC class I and II presentation pathways by exogenous antigens: a quantitative in vivo comparison. J Immunol 172:6129–6135

    Article  CAS  PubMed  Google Scholar 

  • Sultana DA, Zhang SL, Todd SP, Bhandoola A (2012) Expression of functional P-selectin glycoprotein ligand 1 on hematopoietic progenitors is developmentally regulated. J Immunol 188:4385–4393

    Article  CAS  PubMed  Google Scholar 

  • Tailford LE, Crost EH, Kavanaugh D, Juge N (2015) Mucin glycan foraging in the human gut microbiome. Front Genet 6:81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takaba H, Takayanagi H (2017) The mechanisms of T cell selection in the thymus. Trends Immunol 38:805–816

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi H, Yu H, Hao H et al (2017) O-glycosylation modulates the stability of epidermal growth factor-like repeats and thereby regulates Notch trafficking. J Biol Chem 292:15964–15973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theodoratou E, Campbell H, Ventham NT et al (2014) The role of glycosylation in IBD. Nat Rev Gastroenterol Hepatol 11:588–600

    Article  CAS  PubMed  Google Scholar 

  • Togayachi A, Kozono Y, Ishida H et al (2007) Polylactosamine on glycoproteins influences basal levels of lymphocyte and macrophage activation. Proc Natl Acad Sci U S A 104:15829–15834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toscano MA, Bianco GA, Ilarregui JM et al (2007) Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat Immunol 8:825–834

    Article  CAS  PubMed  Google Scholar 

  • Townsend D (2014) Finding the sweet spot: assembly and glycosylation of the dystrophin-associated glycoprotein complex. Anat Rec 297:1694–1705

    Article  CAS  Google Scholar 

  • Trbojević Akmačić I, Ventham NT, Theodoratou E et al (2015) Inflammatory bowel disease associates with proinflammatory potential of the immunoglobulin G glycome. Inflamm Bowel Dis 21:1237–1247

    PubMed  Google Scholar 

  • Tribulatti MV, Cattaneo V, Hellman U et al (2009) Galectin-8 provides costimulatory and proliferative signals to T lymphocytes. J Leukoc Biol 86:371–380

    Article  CAS  PubMed  Google Scholar 

  • Trombetta ES, Helenius A (1998) Lectins as chaperones in glycoprotein folding. Curr Opin Struct Biol 8:587–592

    Article  CAS  PubMed  Google Scholar 

  • Tsai C-M, Guan C-H, Hsieh H-W et al (2011) Galectin-1 and galectin-8 have redundant roles in promoting plasma cell formation. J Immunol 187:1643–1652

    Article  CAS  PubMed  Google Scholar 

  • Übelhart R, Bach MP, Eschbach C et al (2010) N-linked glycosylation selectively regulates autonomous precursor BCR function. Nat Immunol 11:759–765

    Article  PubMed  CAS  Google Scholar 

  • Unanue ER, Turk V, Neefjes J (2016) Variations in MHC class II antigen processing and presentation in health and disease. Annu Rev Immunol 34:265–297. https://doi.org/10.1146/annurev-immunol-041015-055420

    Article  CAS  PubMed  Google Scholar 

  • Varki A, Gagneux P (2012) Multifarious roles of sialic acids in immunity. Ann N Y Acad Sci 1253:16–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhelst X, Dias AM, Colombel J-F et al (2020) Protein glycosylation as a diagnostic and prognostic marker of chronic inflammatory gastrointestinal and liver diseases. Gastroenterology 158:95–110

    Article  CAS  PubMed  Google Scholar 

  • Videira PA, Amado IF, Crespo HJ et al (2008) Surface alpha 2-3- and alpha 2-6-sialylation of human monocytes and derived dendritic cells and its influence on endocytosis. Glycoconj J 25:259–268. https://doi.org/10.1007/s10719-007-9092-6

    Article  CAS  PubMed  Google Scholar 

  • Vivier E, Artis D, Colonna M et al (2018) Innate lymphoid cells: 10years on. Cell 174:1054–1066

    Article  CAS  PubMed  Google Scholar 

  • Vučković F, Krištić J, Gudelj I et al (2015) Association of systemic lupus erythematosus with decreased immunosuppressive potential of the IgG glycome. Arthritis Rheumatol (Hoboken, NJ) 67:2978–2989

    Article  CAS  Google Scholar 

  • Wang Y, Tan J, Sutton-Smith M et al (2001) Modeling human congenital disorder of glycosylation type IIa in the mouse: conservation of asparagine-linked glycan-dependent functions in mammalian physiology and insights into disease pathogenesis. Glycobiology 11:1051–1070

    Article  CAS  PubMed  Google Scholar 

  • Webster P, Pusey C (2017) Crescentic glomerulonephritis: beyond the immune system. Nat Rev Nephrol 13:198–200

    Article  PubMed  Google Scholar 

  • Wiendl H, Hohlfeld R, Kieseier BC (2005) Immunobiology of muscle: advances in understanding an immunological microenvironment. Trends Immunol 26:373–380

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Thalhamer T, Franca RF et al (2014) Galectin-9-CD44 interaction enhances stability and function of adaptive regulatory T cells. Immunity 41:270–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu TB, Dodd S, Yu L-G, Subramanian S (2020) Serum galectins as potential biomarkers of inflammatory bowel diseases. PLoS One 15:e0227306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarbock A, Ley K, McEver RP, Hidalgo A (2011) Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow. Blood 118:6743–6751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng J, Eljalby M, Aryal RP et al (2020) Cosmc controls B cell homing. Nat Commun 11:3990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou RW, Mkhikian H, Grigorian A et al (2014) N-glycosylation bidirectionally extends the boundaries of thymocyte positive selection by decoupling Lck from Ca2+ signaling. Nat Immunol 15:1038–1045

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Song Y, Yang W et al (2016) ASCA, ANCA, ALCA and many more: are they useful in the diagnosis of inflammatory bowel disease? Dig Dis 34:90–97

    Article  PubMed  Google Scholar 

  • Zhu C, Anderson AC, Schubart A et al (2005) The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6:1245–1252

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Inês Alves or Salomé S. Pinho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alves, I. et al. (2021). The Role of Glycosylation in Inflammatory Diseases. In: Lauc, G., Trbojević-Akmačić, I. (eds) The Role of Glycosylation in Health and Disease. Advances in Experimental Medicine and Biology, vol 1325. Springer, Cham. https://doi.org/10.1007/978-3-030-70115-4_13

Download citation

Publish with us

Policies and ethics