Skip to main content

A Multi Classifier Approach for Supporting Alzheimer’s Diagnosis Based on Handwriting Analysis

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12661))

Included in the following conference series:

Abstract

Nowadays, the treatments of neurodegenerative diseases are increasingly sophisticated, mainly thanks to innovations in the medical field. As the effectiveness of care, strategies is enhanced by the early diagnosis, in recent years there has been an increasing interest in developing reliable, non-invasive, easy to administer, and cheap diagnostics tools to support clinicians in the diagnostic processes. Among others, Alzheimer’s disease (AD) has received special attention in that it is a severe and progressive neurodegenerative disease that heavily influence the patient’s quality of life, as well as the social costs for proper care. In this context, a large variety of methods have been proposed that exploit handwriting and drawing tasks to discriminate between healthy subjects and AD patients. Most, if not all, of these methods adopt a single machine learning technique to achieve the final classification. We propose to tackle the problem by adopting a multi-classifier approach envisaging as many classifiers as the number of tasks, each of whom produces a binary output. The outputs of the classifiers are eventually combined by a majority vote to achieve the final decision. Experiments on a dataset involving 175 subjects executing 25 different handwriting and drawing tasks and 6 different machine learning techniques selected among the most used ones in the literature show that the best results are achieved by selecting the subset of tasks on which each classifier perform best and then combining the outputs of the classifier on each task, achieving an overall accuracy of 91% with a sensitivity of 83% and a specificity of 100%. Moreover, this strategy reduces the meantime to complete the test from 25 minutes to less than 10.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armstrong, M.J., et al.: Criteria for the diagnosis of corticobasal degeneration. Neurology 80(5), 496–503 (2013)

    Article  Google Scholar 

  2. Myszczynska, M.A.: Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nature Rev. Neurol. 16(8), 1–17 (2020)

    Article  Google Scholar 

  3. Le, W., Dong, J., Li, S., Korczyn, A.D.: Can biomarkers help the early diagnosis of parkinson’s disease? Neurosci. Bull. 33(5), 535–542 (2017)

    Article  Google Scholar 

  4. Li, T., Le, W.: Biomarkers for parkinson’s disease: how good are they? Neurosci. bull. 36(2), 183–194 (2020)

    Article  Google Scholar 

  5. Morley, J.F., et al.: Optimizing olfactory testing for the diagnosis of parkinson’s disease: item analysis of the university of pennsylvania smell identification test. NPJ Parkinson’s Dis. 4(1), 1–7 (2018)

    Google Scholar 

  6. O’Hara, D.M., Kalia, S.K., Kalia, L.V.: Methods for detecting toxic \(\alpha \)-synuclein species as a biomarker for parkinson’s disease. Critical Rev. Clin. Lab. Sci. 57(5), 1–17 (2020)

    Article  Google Scholar 

  7. Chang, C.-W., Yang, S.-Y., Yang, C.-C., Chang, C.-W., Wu, Y.-R.: Plasma and serum alpha-synuclein as a biomarker of diagnosis in patients with parkinson’s disease. Frontiers Neurol. 10, 1388 (2020)

    Article  Google Scholar 

  8. Schapira, A.H.: Recent developments in biomarkers in parkinson disease. Current Opin. Neurol. 26(4), 395 (2013)

    Article  Google Scholar 

  9. Broderick, M.P., Van Gemmert, A.W., Shill, H.A., Stelmach, G.E.: Hypometria and bradykinesia during drawing movements in individuals with parkinson’s disease. Exp. Brain Res. 197(3), 223–233 (2009)

    Article  Google Scholar 

  10. Van Gemmert, A., Adler, C.H., Stelmach, G.: Parkinson’s disease patients undershoot target size in handwriting and similar tasks. J. Neurol. Neurosurg. Psychiatry 74(11), 1502–1508 (2003)

    Article  Google Scholar 

  11. Senatore, R., Marcelli, A.: A paradigm for emulating the early learning stage of handwriting: performance comparison between healthy controls and parkinson’s disease patients in drawing loop shapes. Hum. Mov. Sci. 65, 89–101 (2019)

    Article  Google Scholar 

  12. Teulings, H.-L., Contreras-Vidal, J.L., Stelmach, G.E., Adler, C.H.: Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Exp. Neurol. 146(1), 159–170 (1997)

    Article  Google Scholar 

  13. Teulings, H.-L., Stelmach, G.E.: Control of stroke size, peak acceleration, and stroke duration in parkinsonian handwriting. Hum. Mov. Sci. 10(2–3), 315–334 (1991)

    Article  Google Scholar 

  14. Jankovic, J.: Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79(4), 368–376 (2008)

    Article  Google Scholar 

  15. Impedovo, D., Pirlo, G., Vessio, G.: Dynamic handwriting analysis for supporting earlier parkinson’s disease diagnosis. Information 9(10), 247 (2018)

    Article  Google Scholar 

  16. Werner, P., Rosenblum, S., Bar-On, G., Heinik, J., Korczyn, A.: Handwriting process variables discriminating mild alzheimer’s disease and mild cognitive impairment. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 61(4), P228–P236 (2006)

    Google Scholar 

  17. Pirlo, G., Diaz, M., Ferrer, M.A., Impedovo, D., Occhionero, F., Zurlo, U.: Early diagnosis of neurodegenerative diseases by handwritten signature analysis. In: Murino, V., Puppo, E., Sona, D., Cristani, M., Sansone, C. (eds.) ICIAP 2015. LNCS, vol. 9281, pp. 290–297. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23222-5_36

    Chapter  Google Scholar 

  18. Garre-Olmo, J., Faúndez-Zanuy, M., López-de-Ipiña, K., Calvó-Perxas, L., Turró-Garriga, O.: Kinematic and pressure features of handwriting and drawing: preliminary results between patients with mild cognitive impairment, alzheimer disease and healthy controls. Current Alzheimer Res. 14(9), 960–968 (2017)

    Google Scholar 

  19. Kahindo, C., El-Yacoubi, M.A., Garcia-Salicetti, S., Rigaud, A.-S., Cristancho-Lacroix, V.: Characterizing early-stage alzheimer through spatiotemporal dynamics of handwriting. IEEE Signal Proc. Lett. 25(8), 1136–1140 (2018)

    Article  Google Scholar 

  20. Cilia, N.D., De Stefano, C., Fontanella, F., Molinara, M., Scotto Di Freca, A.: Handwriting analysis to support alzheimer’s disease diagnosis: a preliminary study. In: Vento, M., Percannella, G. (eds.) CAIP 2019. LNCS, vol. 11679, pp. 143–151. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29891-3_13

    Chapter  Google Scholar 

  21. Cilia, N.D., De Stefano, C., Fontanella, F., Molinara, M., Scotto Di Freca, A.: Using handwriting features to characterize cognitive impairment. In: Ricci, E., Rota Bulò, S., Snoek, C., Lanz, O., Messelodi, S., Sebe, N. (eds.) ICIAP 2019. LNCS, vol. 11752, pp. 683–693. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30645-8_62

    Chapter  Google Scholar 

  22. Cilia, N.D., De Stefano, C., Fontanella, F., di Freca, A.S.: How word choice affects cognitive impairment detection by handwriting analysis: a preliminary study. In: Cicirelli, F., Guerrieri, A., Pizzuti, C., Socievole, A., Spezzano, G., Vinci, A. (eds.) WIVACE 2019. CCIS, vol. 1200, pp. 113–123. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45016-8_12

    Chapter  Google Scholar 

  23. Ishikawa, T. et al.: Handwriting features of multiple drawing tests for early detection of alzheimer’s disease: a preliminary result. In: MedInfo, pp. 168–172 (2019)

    Google Scholar 

  24. Cilia, N.D., De Stefano, C., Fontanella, F., Di Freca, A.S.: An experimental protocol to support cognitive impairment diagnosis by using handwriting analysis. Procedia Comput. Sci. 141, 466–471 (2018)

    Article  Google Scholar 

  25. Sarica, A., Cerasa, A., Quattrone, A.: Random forest algorithm for the classification of neuroimaging data in alzheimer’s disease: a systematic review. Frontiers Aging Neurosci. 9, 329 (2017)

    Article  Google Scholar 

  26. Abdullah, M.N., Wah, Y.B., Zakaria, Y., Majeed, A.B.A., Huat, O.S.: Discovering potential blood-based cytokine biomarkers for alzheimer’s disease using firth logistic regression. Epidemiology, Biostatistics Pub. Health 16(4), 2019

    Google Scholar 

  27. El Mehdi Benyoussef, B., Elbyed, A., El Hadiri, H.: 3d MRI classification using KNN and deep neural network for alzheimer’s disease diagnosis. Advanced Intelligent Systems for Sustainable Development (AI2SD 2018): vol. 4: Advanced Intelligent Systems Applied to Health, vol. 914, p. 154 (2019)

    Google Scholar 

  28. Ghazi, M.M., et al.: Training recurrent neural networks robust to incomplete data: application to alzheimer’s disease progression modeling. Med. Image Anal. 53, 39–46 (2019)

    Article  Google Scholar 

  29. Kruthika, K., Maheshappa, H., Initiative, A.D.N., et al.: Multistage classifier-based approach for alzheimer’s disease prediction and retrieval. Inf. Med. Unlocked 14, 34–42 (2019)

    Article  Google Scholar 

  30. Battineni, G., Chintalapudi, N., Amenta, F.: Machine learning in medicine: performance calculation of dementia prediction by support vector machines (svm). Inf. Med. Unlocked 16, 100200 (2019)

    Article  Google Scholar 

  31. Pereira, C.R., et al.: A step towards the automated diagnosis of parkinson’s disease: Analyzing handwriting movements. In: 2015 IEEE 28th International Symposium on Computer-Based Medical Systems, pp. 171–176 (2015)

    Google Scholar 

  32. Kittler, J., Hatef, M., Duin, R.P., Matas, J.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe De Gregorio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Gregorio, G., Desiato, D., Marcelli, A., Polese, G. (2021). A Multi Classifier Approach for Supporting Alzheimer’s Diagnosis Based on Handwriting Analysis. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12661. Springer, Cham. https://doi.org/10.1007/978-3-030-68763-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68763-2_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68762-5

  • Online ISBN: 978-3-030-68763-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics