Skip to main content

Contactless Human Activity Analysis: An Overview of Different Modalities

  • Chapter
  • First Online:
Contactless Human Activity Analysis

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 200))

Abstract

Human Activity Analysis (HAA) is a prominent research field in this modern era which has enlightened us with the opportunities of monitoring regular activities or the surrounding environment as per our desire. In recent times, Contactless Human Activity Analysis (CHAA) has added a new dimension in this domain as these systems perform without any wearable device or any kind of physical contact with the user. We have analyzed different modalities of CHAA and arranged them into three major categories: RF-based, sound-based, and vision-based modalities. In this chapter, we have presented state-of-the-art modalities, frequently faced challenges with some probable solutions, and currently used applications of CHAA with future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hussain, Z., Sheng, M., Zhang, W.E.: Different approaches for human activity recognition: a survey. arXiv preprint arXiv:1906.05074 (2019)

  2. Ma, J., Wang, H., Zhang, D., Wang, Y., Wang, Y.: A survey on wi-fi based contactless activity recognition. In: Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), pp. 1086–1091. IEEE (2016)

    Google Scholar 

  3. Wang, Z., Hou, Y., Jiang, K., Zhang, C., Dou, W., Huang, Z., Guo, Y.: A survey on human behavior recognition using smartphone-based ultrasonic signal. IEEE Access 7, 100 581–100 604 (2019)

    Google Scholar 

  4. Foerster, F., Smeja, M., Fahrenberg, J.: Detection of posture and motion by accelerometry: a validation study in ambulatory monitoring. Comput. Human Behav. 15(5), 571–583 (1999)

    Article  Google Scholar 

  5. Watson-Watt, R.: Radar in war and in peace (1945)

    Google Scholar 

  6. Frazier, L.M.: Radar surveillance through solid materials. In: Command, Control, Communications, and Intelligence Systems for Law Enforcement, vol. 2938. International Society for Optics and Photonics, pp. 139–146 (1997)

    Google Scholar 

  7. Bahl, P., Padmanabhan, V.N.: Radar: an in-building rf-based user location and tracking system. In: Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No. 00CH37064), vol. 2, pp. 775–784. IEEE (2000)

    Google Scholar 

  8. Adib, F., Kabelac, Z., Katabi, D., Miller, R.C.: 3d tracking via body radio reflections. In: 11th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 14), pp. 317–329 (2014)

    Google Scholar 

  9. Adib, F., Mao, H., Kabelac, Z., Katabi, D., Miller, R.C.: Smart homes that monitor breathing and heart rate. In: Proceedings of the 33rd annual ACM Conference on Human Factors in Computing Systems, pp. 837–846 (2015)

    Google Scholar 

  10. Halperin, D., Hu, W., Sheth, A., Wetherall, D.: Tool release: gathering 802.11 n traces with channel state information. ACM SIGCOMM Comput. Commun. Rev. 41(1), 53 (2011)

    Google Scholar 

  11. Geisheimer, J.L., Greneker III, E.F., Marshall, W.S.: High-resolution doppler model of the human gait. In: Radar Sensor Technology and Data Visualization, vol. 4744. International Society for Optics and Photonics, pp. 8–18 (2002)

    Google Scholar 

  12. Lien, J., Gillian, N., Karagozler, M.E., Amihood, P., Schwesig, C., Olson, E., Raja, H., Poupyrev, I.: Soli: Ubiquitous gesture sensing with millimeter wave radar. ACM Trans. Graph. (TOG) 35(4), 1–19 (2016)

    Article  Google Scholar 

  13. Anitha, U., Malarkkan, S., Premalatha, J., Prince, P.G.K.: Study of object detection in sonar image using image segmentation and edge detection methods. Indian J. Sci. Technol. 9(42) (2016)

    Google Scholar 

  14. Katzir, S.: Who knew piezoelectricity? rutherford and langevin on submarine detection and the invention of sonar. Notes and Records of the Royal Society 66(2), 141–157 (2012)

    Article  Google Scholar 

  15. Elfes, A.: Sonar-based real-world mapping and navigation. IEEE J. Robot. Autom. 3(3), 249–265 (1987)

    Article  Google Scholar 

  16. Peng, C., Shen, G., Zhang, Y., Li, Y., Tan, K.: Beepbeep: a high accuracy acoustic ranging system using cots mobile devices. In: Proceedings of the 5th International Conference on Embedded Networked Sensor Systems, pp. 1–14 (2007)

    Google Scholar 

  17. Filonenko, V., Cullen, C., Carswell, J.: Investigating ultrasonic positioning on mobile phones. In: 2010 International Conference on Indoor Positioning and Indoor Navigation, pp. 1–8.. IEEE (2010)

    Google Scholar 

  18. Aggarwal, J.K., Cai, Q.: Human motion analysis: a review. Comput. Vis. Image Understan. 73(3), 428–440 (1999)

    Article  Google Scholar 

  19. Gavrila, D.M.: The visual analysis of human movement: a survey. Computer Vis. Image Understan. 73(1), 82–98 (1999)

    Article  MATH  Google Scholar 

  20. Krüger, V., Kragic, D., Ude, A., Geib, C.: The meaning of action: a review on action recognition and mapping. Adv. Robot. 21(13), 1473–1501 (2007)

    Article  Google Scholar 

  21. Liu, A.-A., Xu, N., Nie, W.-Z., Su, Y.-T., Wong, Y., Kankanhalli, M.: Benchmarking a multimodal and multiview and interactive dataset for human action recognition. IEEE Trans. Cybern. 47(7), 1781–1794 (2016)

    Article  Google Scholar 

  22. Liu, A.-A., Su, Y.-T., Nie, W.-Z., Kankanhalli, M.: Hierarchical clustering multi-task learning for joint human action grouping and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(1), 102–114 (2016)

    Article  Google Scholar 

  23. Yang, X., Tian, Y.: Super normal vector for activity recognition using depth sequences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 804–811 (2014)

    Google Scholar 

  24. Li, M., Leung, H., Shum, H.P.: Human action recognition via skeletal and depth based feature fusion. In: Proceedings of the 9th International Conference on Motion in Games, pp. 123–132 (2016)

    Google Scholar 

  25. Burghouts, G., Schutte, K., ten Hove, R.-M., van den Broek, S., Baan, J., Rajadell, O., van Huis, J., van Rest, J., Hanckmann, P., Bouma, H., et al.: Instantaneous threat detection based on a semantic representation of activities, zones and trajectories. Signal Image Video Process. 8(1), 191–200 (2014)

    Article  Google Scholar 

  26. Dawn, D.D., Shaikh, S.H.: A comprehensive survey of human action recognition with spatio-temporal interest point (stip) detector. Visual Comput. 32(3), 289–306 (2016)

    Article  Google Scholar 

  27. Nguyen, T.V., Song, Z., Yan, S.: Stap: Spatial-temporal attention-aware pooling for action recognition. IEEE Trans. Circuits Syst. Video Technol. 25(1), 77–86 (2014)

    Article  Google Scholar 

  28. Xie, Y., Li, Z., Li, M.: Precise power delay profiling with commodity wi-fi. IEEE Trans. Mobile Comput. 18(6), 1342–1355 (2018)

    Article  Google Scholar 

  29. Kim, Y., Ling, H.: Human activity classification based on micro-doppler signatures using a support vector machine. IEEE Trans. Geosci. Remote Sens. 47(5), 1328–1337 (2009)

    Article  Google Scholar 

  30. Rappaport, T.S., et al.: Wireless communications: principles and practice 2 (1996)

    Google Scholar 

  31. Patwari, N., Wilson, J.: Spatial models for human motion-induced signal strength variance on static links. IEEE Trans. Inform. Forensics Secur. 6(3), 791–802 (2011)

    Article  Google Scholar 

  32. Seidel, S.Y., Rappaport, T.S.: 914 mhz path loss prediction models for indoor wireless communications in multifloored buildings. IEEE Trans. Antennas Propagation 40(2), 207–217 (1992)

    Article  Google Scholar 

  33. Yuan, Y., Zhao, J., Qiu, C., Xi, W.: Estimating crowd density in an rf-based dynamic environment. IEEE Sensors J. 13(10), 3837–3845 (2013)

    Article  Google Scholar 

  34. Wu, K., Xiao, J., Yi, Y., Gao, M., Ni, L.M.: Fila: Fine-grained indoor localization. In: Proceedings IEEE INFOCOM, pp. 2210–2218. IEEE (2012)

    Google Scholar 

  35. Yang, Z., Zhou, Z., Liu, Y.: From rssi to csi: indoor localization via channel response. ACM Comput. Surv. (CSUR) 46(2), 1–32 (2013)

    Article  MATH  Google Scholar 

  36. Tse, D., Viswanath, P.: Fundamentals of Wireless Communication. Cambridge University Press (2005)

    Google Scholar 

  37. Wang, W., Liu, A.X., Shahzad, M., Ling, K., Lu, S.: Understanding and modeling of wifi signal based human activity recognition. In: Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, pp. 65–76 (2015)

    Google Scholar 

  38. Pu, Q., Gupta, S., Gollakota, S., Patel, S.: Whole-home gesture recognition using wireless signals. In: Proceedings of the 19th Annual International Conference on Mobile Computing & Networking, pp. 27–38 (2013)

    Google Scholar 

  39. Soumekh, M.: Synthetic Aperture Radar Signal Processing. Wiley, New York, vol. 7 (1999)

    Google Scholar 

  40. Kim, Y., Moon, T.: Human detection and activity classification based on micro-doppler signatures using deep convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 13(1), 8–12 (2015)

    Article  Google Scholar 

  41. Griffiths, H.: New ideas in fm radar. Electron. Commun. Eng. J. 2(5), 185–194 (1990)

    Article  Google Scholar 

  42. Liu, J., Liu, H., Chen, Y., Wang, Y., Wang, C.: Wireless sensing for human activity: a survey. IEEE Commun. Surv, Tutorials (2019)

    Google Scholar 

  43. Al-Naji, A., Al-Askery, A.J., Gharghan, S.K., Chahl, J.: A system for monitoring breathing activity using an ultrasonic radar detection with low power consumption. J. Sensor Actuator Netw. 8(2), 32 (2019)

    Article  Google Scholar 

  44. Biswas, S., Harrington, B., Hajiaghajani, F., Wang, R.: Contact-less indoor activity analysis using first-reflection echolocation. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2016)

    Google Scholar 

  45. Griffith, H., Hajiaghajani, F., Biswas, S.: Office activity classification using first-reflection ultrasonic echolocation. In: 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE 2017, 4451–4454 (2017)

    Google Scholar 

  46. Kalgaonkar,K., Raj, B.: Acoustic doppler sonar for gait recognition. In: 2007 IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 27–32. IEEE (2007)

    Google Scholar 

  47. Kalgaonkar, K., Hu, R., Raj, B.: Ultrasonic doppler sensor for voice activity detection. IEEE Signal Process. Lett. 14(10), 754–757 (2007)

    Article  Google Scholar 

  48. Kalgaonkar, K., Raj, B.: Recognizing talking faces from acoustic doppler reflections. In: 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition, pp. 1–6.IEEE (2008)

    Google Scholar 

  49. Kalgaonkar, K., Raj, B.: One-handed gesture recognition using ultrasonic doppler sonar. In: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1889–1892. IEEE (2009)

    Google Scholar 

  50. Pittman, C.R., LaViola, J.J.: Multiwave: Complex hand gesture recognition using the doppler effect. Graphics Interface, pp. 97–106 (2017)

    Google Scholar 

  51. Fu, B., Kirchbuchner, F., Kuijper, A., Braun, A., Vaithyalingam Gangatharan, D.: Fitness activity recognition on smartphones using doppler measurements. In: Informatics, vol. 5, no. 2. Multidisciplinary Digital Publishing Institute, p. 24 (2018)

    Google Scholar 

  52. Ruan, W., Sheng, Q.Z., Yang, L., .Gu, L., Xu, P., Shangguan, L.: Audiogest: enabling fine-grained hand gesture detection by decoding echo signal. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 474–485 (2016)

    Google Scholar 

  53. Qifan, Y., Hao, T., Xuebing, Z., Yin, L., Sanfeng, Z.: Dolphin: ultrasonic-based gesture recognition on smartphone platform. In: 2014 IEEE 17th International Conference on Computational Science and Engineering, pp. 1461–1468. IEEE (2014)

    Google Scholar 

  54. Gupta, S., Morris, D., Patel, S., Tan, D.: Soundwave: using the doppler effect to sense gestures. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1911–1914 (2012)

    Google Scholar 

  55. Wang, T., Zhang, D., Wang, L., Zheng, Y., Gu, T., Dorizzi, B., Zhou, X.: Contactless respiration monitoring using ultrasound signal with off-the-shelf audio devices. IEEE Internet Things J. 6(2), 2959–2973 (2018)

    Article  Google Scholar 

  56. Wang, W., Liu, A.X., Sun, K.: Device-free gesture tracking using acoustic signals. In: Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking, pp. 82–94 (2016)

    Google Scholar 

  57. Nandakumar, R., Iyer, V., Tan, D., Gollakota, S.: Fingerio: using active sonar for fine-grained finger tracking. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 1515–1525 (2016)

    Google Scholar 

  58. Wang, J., Zhao, K., Zhang, X., Peng, C.: Ubiquitous keyboard for small mobile devices: harnessing multipath fading for fine-grained keystroke localization. In: Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services, pp. 14–27 (2014)

    Google Scholar 

  59. Chen, M., Yang, P., Xiong, J., Zhang, M., Lee, Y., Xiang, C., Tian, C.: Your table can be an input panel: Acoustic-based device-free interaction recognition. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 3(1), 1–21 (2019)

    Google Scholar 

  60. Du, H., Li, P., Zhou, H., Gong, W., Luo, G., Yang, P.: Wordrecorder: accurate acoustic-based handwriting recognition using deep learning. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pp. 1448–1456. IEEE (2018)

    Google Scholar 

  61. Vrigkas, M., Nikou, C., Kakadiaris, I.A.: A review of human activity recognition methods. Front. Robot. AI 2, 28 (2015)

    Article  Google Scholar 

  62. Jalal, A., Kamal, S., Kim, D.: Shape and motion features approach for activity tracking and recognition from kinect video camera. In: 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops, pp. 445–450. IEEE (2015)

    Google Scholar 

  63. Lin, W., Sun, M.-T., Poovandran, R., Zhang, Z.: Human activity recognition for video surveillance. In: IEEE International Symposium on Circuits and Systems. IEEE 2008, 2737–2740 (2008)

    Google Scholar 

  64. Liu, B., Cai, H., Ju, Z., Liu, H.: Rgb-d sensing based human action and interaction analysis: a survey. Pattern Recogn. 94, 1–12 (2019)

    Article  Google Scholar 

  65. Nie, Q., Wang, J., Wang, X., Liu, Y.: View-invariant human action recognition based on a 3d bio-constrained skeleton model. IEEE Trans. Image Process. 28(8), 3959–3972 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  66. Ni, B., Wang, G., Moulin, P.: Rgbd-hudaact: a color-depth video database for human daily activity recognition. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV workshops). IEEE, pp. 1147–1153 (2011)

    Google Scholar 

  67. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  68. Marszalek, M., Laptev, I., Schmid, C.: Actions in context. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2929–2936. IEEE (2009)

    Google Scholar 

  69. Rodriguez, M.D., Ahmed, J., Shah, M.: Action mach a spatio-temporal maximum average correlation height filter for action recognition. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE 2008, pp. 1–8 (2008)

    Google Scholar 

  70. Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. In: Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1, vol. 2, pp. 1395–1402. IEEE (2005)

    Google Scholar 

  71. Fothergill, S., Mentis, H., Kohli, P., Nowozin, S.: Instructing people for training gestural interactive systems. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1737–1746 (2012)

    Google Scholar 

  72. Liu, J., Shahroudy, A., Perez, M.L., Wang, G., Duan, L.-Y., Chichung, A.K.: Ntu rgb+ d 120: A large-scale benchmark for 3d human activity understanding. IEEE Trans. Pattern Anal. Mach, Intell (2019)

    Google Scholar 

  73. Carmi, R., Itti, L.: The role of memory in guiding attention during natural vision. J. Vis. 6(9), 4 (2006)

    Article  Google Scholar 

  74. Corbillon, X., De Simone, F., Simon, G.: 360-degree video head movement dataset. In: Proceedings of the 8th ACM on Multimedia Systems Conference, pp. 199–204 (2017)

    Google Scholar 

  75. Vakanski, A., Jun, H.-P., Paul, D., Baker, R.: A data set of human body movements for physical rehabilitation exercises. Data 3(1), 2 (2018)

    Article  Google Scholar 

  76. Ramanathan, M., Yau, W.-Y., Teoh, E.K.: Human action recognition with video data: research and evaluation challenges. IEEE Trans. Human-Mach. Syst. 44(5), 650–663 (2014)

    Article  Google Scholar 

  77. Wang, S., Song, J., Lien, J., Poupyrev, I., Hilliges, O.: Interacting with soli: exploring fine-grained dynamic gesture recognition in the radio-frequency spectrum. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pp. 851–860 (2016)

    Google Scholar 

  78. Bulling, A., Blanke, U., Schiele, B.: A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput. Surv. (CSUR) 46(3), 1–33 (2014)

    Article  Google Scholar 

  79. Ahad, M.A.R., Antar, A.D., Shahid, O.: Vision-based action understanding for assistive healthcare: a short review. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops 2019, 1–11 (2019)

    Google Scholar 

  80. Wilson, J., Patwari, N.: See-through walls: Motion tracking using variance-based radio tomography networks. IEEE Trans. Mobile Comput. 10(5), 612–621 (2010)

    Article  Google Scholar 

  81. Adib, F., Katabi, D.: See through walls with wifi!. In: Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, pp. 75–86 (2013)

    Google Scholar 

  82. Chetty, K., Smith, G.E., Woodbridge, K.: Through-the-wall sensing of personnel using passive bistatic wifi radar at standoff distances. IEEE Trans. Geosci. Remote Sens. 50(4), 1218–1226 (2011)

    Article  Google Scholar 

  83. Kosba, A.E., Saeed, A., Youssef, M.: Rasid: a robust wlan device-free passive motion detection system. In: 2012 IEEE International Conference on Pervasive Computing and Communications, pp. 180–189. IEEE (2012)

    Google Scholar 

  84. Ding, E., Li, X., Zhao, T., Zhang, L., Hu, Y.: A robust passive intrusion detection system with commodity wifi devices. J. Sens. 2018, (2018)

    Google Scholar 

  85. Fu, B., Karolus, J., Grosse-Puppendahl, T., Hermann, J., Kuijper, A.: Opportunities for activity recognition using ultrasound doppler sensing on unmodified mobile phones. In: Proceedings of the 2nd International Workshop on Sensor-Based Activity Recognition and Interaction, pp. 1–10 (2015)

    Google Scholar 

  86. Wang, Y., Liu, J., Chen, Y., Gruteser, M., Yang, J., Liu, H.: E-eyes: device-free location-oriented activity identification using fine-grained wifi signatures. In: Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, pp. 617–628 (2014)

    Google Scholar 

  87. Guo, Z., Xiao, F., Sheng, B., Fei, H., Yu, S.: Wireader: adaptive air handwriting recognition based on commercial wi-fi signal. IEEE Internet Things J. (2020)

    Google Scholar 

  88. Reddy, K.K., Shah, M.: Recognizing 50 human action categories of web videos. Mach. Vis. Appl. 24(5), 971–981 (2013)

    Article  Google Scholar 

  89. Soomro, K., Zamir, A.R., Shah, M.: A dataset of 101 human action classes from videos in the wild. Center Res. Comput. Vis. 2 (2012)

    Google Scholar 

  90. Jhuang, H., Garrote, H., Poggio, E., Serre, T., Hmdb, T.: A large video database for human motion recognition. In: Proceedings of IEEE International Conference on Computer Vision, vol. 4, no. 5, 2011, p. 6

    Google Scholar 

  91. Mubashir, M., Shao, L., Seed, L.: A survey on fall detection: principles approaches. Neurocomputing 100, 144–152 (2013)

    Article  Google Scholar 

  92. Wang, Y., Wu, K., Ni, L.M.: Wifall: Device-free fall detection by wireless networks. IEEE Trans. Mobile Comput. 16(2), 581–594 (2016)

    Article  Google Scholar 

  93. Wang, H., Zhang, D., Wang, Y., Ma, J., Wang, Y., Li, S.: Rt-fall: A real-time and contactless fall detection system with commodity wifi devices. IEEE Trans. Mobile Comput. 16(2), 511–526 (2016)

    Article  Google Scholar 

  94. Sadreazami, H., Mitra, D., Bolic, M., Rajan, S.: Compressed domain contactless fall incident detection using uwb radar signals. In: 18th IEEE International New Circuits and Systems Conference (NEWCAS). IEEE 2020, pp. 90–93 (2020)

    Google Scholar 

  95. Kendall, A., Grimes, M., Cipolla, R.: Posenet: a convolutional network for real-time 6-dof camera relocalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2938–2946 (2015)

    Google Scholar 

  96. Patwari, N., Brewer, L., Tate, Q., Kaltiokallio, O., Bocca, M.: Breathfinding: a wireless network that monitors and locates breathing in a home. IEEE J. Selected Topics Signal Process. 8(1), 30–42 (2013)

    Article  Google Scholar 

  97. Abdelnasser, H. Harras, K.A., Youssef, M.: Ubibreathe: a ubiquitous non-invasive wifi-based breathing estimator. In: Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 277–286 (2015)

    Google Scholar 

  98. Liu, J., Chen, Y., Wang, Y., Chen, X., Cheng, J., Yang, J.: Monitoring vital signs and postures during sleep using wifi signals. IEEE Internet Things J. 5(3), 2071–2084 (2018)

    Article  Google Scholar 

  99. Wang, X., Yang, C., Mao, S.: Phasebeat: exploiting csi phase data for vital sign monitoring with commodity wifi devices. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 1230–1239. IEEE (2017)

    Google Scholar 

  100. Islam, S.M., Boric-Lubecke, O., Lubekce, V.M.: Concurrent respiration monitoring of multiple subjects by phase-comparison monopulse radar using independent component analysis (ica) with jade algorithm and direction of arrival (doa). IEEE Access 8, 73 558–73 569 (2020)

    Google Scholar 

  101. Zhao, M., Adib, F., Katabi, D.: Emotion recognition using wireless signals. In: Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking, pp. 95–108 (2016)

    Google Scholar 

  102. Piriyajitakonkij, M., Warin, P., Lakhan, P., Leelaarporn, P., Kumchaiseemak, N., Suwajanakorn, S., Pianpanit, T., Niparnan, N., Mukhopadhyay, S.C., Wilaiprasitporn, T.: Sleepposenet: multi-view learning for sleep postural transition recognition using uwb. IEEE J, Biomedical Health Inform (2020)

    Google Scholar 

  103. Hsu, C.-Y., Ahuja, A., Yue, S., Hristov, R., Kabelac, Z., Katabi, D.: Zero-effort in-home sleep and insomnia monitoring using radio signals. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1(3), 1–18 (2017)

    Article  Google Scholar 

  104. Weeks, J., Elsaadany, M., Lessard-Tremblay, M., Targino, L., Liamini, M., Gagnon, G.: A novel sensor-array system for contactless electrocardiogram acquisition. In: 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 4122–4125. IEEE (2020)

    Google Scholar 

  105. Zhang, J., Chen, Y., Chen, T., et al.: Health-radio: towards contactless myocardial infarction detection using radio signals. IEEE Trans, Mobile Comput (2020)

    Google Scholar 

  106. Ulhaq, A., Khan, A., Gomes, D., Pau, M.: Computer vision for covid-19 control: a survey. arXiv preprint arXiv:2004.09420 (2020)

  107. Yang, D., Yurtsever, E., Renganathan, V., Redmill, K., Ă–zgĂĽner, U.: a vision-based social distancing and critical density detection system for covid-19. Image video Process, DOI (2020)

    Google Scholar 

  108. Jiang, M., Fan, X.: Retinamask: a face mask detector. arXiv preprint arXiv:2005.03950 (2020)

  109. Ge, S., Li, J., Ye, Q., Luo, Z.: Detecting masked faces in the wild with lle-cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2682–2690 (2017)

    Google Scholar 

  110. Lahiri, B., Bagavathiappan, S., Jayakumar, T., Philip, J.: Medical applications of infrared thermography: a review. Infrared Phys. Technol. 55(4), 221–235 (2012)

    Article  Google Scholar 

  111. Somboonkaew, A., Prempree, P., Vuttivong, S., Wetcharungsri, J., Porntheeraphat, S., Chanhorm, S., Pongsoon, P., Amarit, R., Intaravanne, Y., Chaitavon, K.: Mobile-platform for automatic fever screening system based on infrared forehead temperature. In: Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC). IEEE 2017, pp. 1–4 (2017)

    Google Scholar 

  112. Github—nvidia-ai-iot/face-mask-detection: Face mask detection using nvidia transfer learning toolkit (tlt) and deepstream for covid-19. https://github.com/NVIDIA-AI-IOT/face-mask-detection. Accessed 10 Oct 2020

  113. Implementing a real-time, ai-based, face mask detector application for covid-19 | nvidia developer blog. https://developer.nvidia.com/blog/implementing-a-real-time-ai-based-face-mask-detector-application-for-covid-19/. Accessed 10 Oct 2020

  114. Using 3d cameras to monitor social distancing stereolabs. https://www.stereolabs.com/blog/using-3d-cameras-to-monitor-social-distancing/. Accessed 10 Oct 2020

  115. Chiu, W., Lin, P., Chiou, H., Lee, W., Lee, C., Yang, Y., Lee, H., Hsieh, M., Hu, C., Ho, Y., et al.: Infrared thermography to mass-screen suspected sars patients with fever. Asia Pacific J. Public Health 17(1), 26–28 (2005)

    Article  Google Scholar 

  116. Negishi, T., Sun, G., Sato, S., Liu, H., Matsui, T., Abe, S., Nishimura, H., Kirimoto, T., "Infection screening system using thermography and ccd camera with good stability and swiftness for non-contact vital-signs measurement by feature matching and music algorithm. In: 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3183–3186. IEEE (2019)

    Google Scholar 

  117. Li, H., Yang, W., Wang, J., Xu, Y., Huang, L.: Wifinger: talk to your smart devices with finger-grained gesture. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 250–261 (2016)

    Google Scholar 

  118. Altanis, G., Boloudakis, M., Retalis, S., Nikou, N.: Children with motor impairments play a kinect learning game: first findings from a pilot case in an authentic classroom environment. Interaction Design and Architecture (s) J.-IxD&A, vol. 19, no. 19, pp. 91–104 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhan Fuad Abir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abir, F.F., Faisal, M.A.A., Shahid, O., Ahmed, M.U. (2021). Contactless Human Activity Analysis: An Overview of Different Modalities. In: Ahad, M.A.R., Mahbub, U., Rahman, T. (eds) Contactless Human Activity Analysis. Intelligent Systems Reference Library, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-030-68590-4_3

Download citation

Publish with us

Policies and ethics