Skip to main content

Characterization and Utilization of Coal Ash for Synthesis of Building Materials

  • Chapter
  • First Online:
Clean Coal Technologies

Abstract

During the thermal power production, the combustion of coal results in coal ashes as waste products, viz. fly ash (FA) and bottom ash (BA). Considering the fact that the major part of the power comes from thermal power plants, a huge amount of coal ashes are generated that cause serious issues for its disposal. Extensive efforts have been made to utilize these ashes for different applications in bulk amount, and building material manufacturing is one of them. Therefore, in this chapter, the characterization and utilization of coal ashes in building material synthesis are discussed with providing a critique on the challenges and future trends of coal ash utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdollahnejad, Z., Pacheco-Torgal, F., Aguiar, J. B., & Jesus, C. (2015). Durability performance of fly ash based one-part geopolymer mortars. Key Engineering Materials, 634, 113–120. https://doi.org/10.4028/www.scientific.net/KEM.634.113.

    Article  Google Scholar 

  • Al-Majidi, M. H., Lampropoulos, A., Cundy, A., & Meikle, S. (2016). Development of geopolymer mortar under ambient temperature for in situ applications. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2016.05.085.

  • Andrade, L. B., Rocha, J. C., & Cheriaf, M. (2009). Influence of coal bottom ash as fine aggregate on fresh properties of concrete. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2008.05.003.

  • Arezoumandi, M., Looney, T. J., & Volz, J. S. (2015). Effect of fly ash replacement level on the bond strength of reinforcing steel in concrete beams. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2014.10.078.

  • Arezoumandi, M., & Volz, J. S. (2013). Effect of fly ash replacement level on the shear strength of high-volume fly ash concrete beams. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2013.06.043.

  • Arezoumandi, M., Wolfe, M. H., & Volz, J. S. (2013). A comparative study of the bond strength of reinforcing steel in high-volume fly ash concrete and conventional concrete. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2012.11.105.

  • Ashish, D. K., Verma, S. K., Singh, J., & Sharma, N. (2018). Strength and durability characteristics of bricks made using coal bottom and coal fly ash. Advances in Concrete Construction. https://doi.org/10.12989/acc.2018.6.4.407.

  • Asokan, P., Saxena, M., & Asolekar, S. R. (2005). Coal combustion residues—Environmental implications and recycling potentials. Resources, Conservation and Recycling. https://doi.org/10.1016/j.resconrec.2004.06.003.

  • Assaedi, H., Alomayri, T., Kaze, C. R., Jindal, B. B., Subaer, S., Shaikh, F., & Alraddadi, S. (2020). Characterization and properties of geopolymer nanocomposites with different contents of Nano-CaCO3. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2020.119137.

  • ASTM C311/C311M-18. (2018). Standard test methods for sampling and testing fly ash or natural Pozzolans for use in Portland-cement concrete. Annual Book of ASTM Standards. https://doi.org/10.1520/C0311_C0311M-18.

  • ASTM International. (2017). ASTM C595-17, standard specification for blended hydraulic cements. ASTM International. https://doi.org/10.1520/C0595_C0595M-17.

  • Aydin, E. (2016). Novel coal bottom ash waste composites for sustainable construction. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2016.07.142.

  • Baite, E., Messan, A., Hannawi, K., Tsobnang, F., & Prince, W. (2016). Physical and transfer properties of mortar containing coal bottom ash aggregates from Tefereyre (Niger). Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2016.08.117.

  • Bhatt, A., Priyadarshini, S., Mohanakrishnan, A. A., Abri, A., Sattler, M., & Techapaphawit, S. (2019). Physical, chemical, and geotechnical properties of coal Fly ash: A global review. Case Studies in Construction Materials. https://doi.org/10.1016/j.cscm.2019.e00263.

  • Blissett, R. S., & Rowson, N. A. (2012). A review of the multi-component utilisation of coal fly ash. Fuel. https://doi.org/10.1016/j.fuel.2012.03.024.

  • British Standard Institution. BS EN 197–1 Cement(2011). Composition, specifications and conformity criteria for common cements. Bsi. https://doi.org/10.3989/mc.2012.07711.

  • Cao, D. Z., Selic, E., & Herbell, J. D. (2008). Utilization of fly ash from coal-fired power plants in China. Journal of Zhejiang University: Science A. https://doi.org/10.1631/jzus.A072163.

  • Cheriaf, M., Rocha, J. C., & Péra, J. (1999). Pozzolanic properties of pulverized coal combustion bottom ash. Cement and Concrete Research. https://doi.org/10.1016/S0008-8846(99)00098-8.

  • Chindaprasirt, P., Jaturapitakkul, C., Chalee, W., & Rattanasak, U. (2009). Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Management, 29(2), 539–543. https://doi.org/10.1016/j.wasman.2008.06.023.

    Article  Google Scholar 

  • Chotetanorm, C., Chindaprasirt, P., Sata, V., Rukzon, S., & Sathonsaowaphak, A. (2013). High-calcium bottom ash Geopolymer: Sorptivity, pore size, and resistance to sodium sulfate attack. Journal of Materials in Civil Engineering. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000560.

  • Çiçek, T., & Çinçin, Y. (2015). Use of fly ash in production of light-weight building bricks. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2015.07.029.

  • Colonna, P., Berloco, N., Ranieri, V., & Shuler, S. T. (2012). Application of bottom ash for pavement binder course. Procedia - Social and Behavioral Sciences. https://doi.org/10.1016/j.sbspro.2012.09.945.

  • Consoli, N. C., Filho, H. C. S., Godoy, V. B., Rosembach, C. M. D. C., & Carraro, J. A. H. (2020). Durability of reclaimed asphalt pavement–coal fly ash–carbide lime blends under severe environmental conditions. Road Materials and Pavement Design. https://doi.org/10.1080/14680629.2018.1506354.

  • Das, D., Pattanaik, S., Parhi, P. K., Mohapatra, R. K., Jyothi, R. K., Lee, J. Y., & In Kim, H. (2019). Stabilization and rheological behavior of fly ash-water slurry using a natural dispersant in pipeline transportation. ACS Omega. https://doi.org/10.1021/acsomega.9b03477.

  • Das, S. K., Mishra, J., & Mustakim, S. M. (2018). Rice husk ash as a potential source material for geopolymer concrete: A review. International Journal of Applied Engineering Research, 13(7), 81–84.

    Google Scholar 

  • Das, S. K., Mishra, J., Singh, S. K., Mustakim, S. M., Patel, A., Das, S. K., & Behera, U. (2020a). Characterization and utilization of rice husk ash (RHA) in fly ash—Blast furnace slag based geopolymer concrete for sustainable future. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.02.870.

  • Das, S. K., Mustakim, S. M., Adesina, A., Mishra, J., Alomayri, T. S., Assaedi, H. S., & Kaze, C. R. (2020b). Fresh, strength and microstructure properties of geopolymer concrete incorporating lime and silica fume as replacement of fly ash. Journal of Building Engineering, 101780. https://doi.org/10.1016/j.jobe.2020.101780.

  • Deb, P. S., Nath, P., & Sarker, P. K. (2014). The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Materials and Design. https://doi.org/10.1016/j.matdes.2014.05.001.

  • Deschner, F., Winnefeld, F., Lothenbach, B., Seufert, S., Schwesig, P., Dittrich, S., Goetz-Neunhoeffer, F., & Neubauer, J. (2012). Hydration of Portland cement with high replacement by siliceous Fly ash. Cement and Concrete Research. https://doi.org/10.1016/j.cemconres.2012.06.009.

  • Dwari, R. K., Sarangi, C. K., Mustakim, S. M., Dash, B., Tripathy, B. C., Ghosh, M. K., & Basu, S. (2020). R&D efforts of CSIR-IMMT toward solving some issues related to Aluminum production. Journal of Sustainable Metallurgy. https://doi.org/10.1007/s40831-019-00250-w.

  • Fernandez-Jimenez, A., García-Lodeiro, I., & Palomo, A. (2007). Durability of alkali-activated fly ash cementitious materials. Journal of Materials Science. https://doi.org/10.1007/s10853-006-0584-8.

  • Fernández-Pereira, C., De La Casa, J. A., Gómez-Barea, A., Arroyo, F., Leiva, C., and Luna, Y. (2011). Application of biomass gasification fly ash for brick manufacturing. Fuel. doi:https://doi.org/10.1016/j.fuel.2010.07.057

  • Ganesh Babu, K., & Siva Nageswara Rao, G. (1996). Efficiency of fly ash in concrete with age. Cement and Concrete Research. https://doi.org/10.1016/S0008-8846(96)85034-4.

  • Hajimohammadi, A., & van Deventer, J. S. J. (2017). Characterisation of one-part geopolymer binders made from fly ash. Waste and Biomass Valorization, 8(1), 225–233. https://doi.org/10.1007/s12649-016-9582-5.

    Article  Google Scholar 

  • Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., & Vijaya Rangan, B. (2004). On the development of Fly ash-based Geopolymer concrete. ACI Materials Journal. https://doi.org/10.14359/13485.

  • Hemalatha, T., & Ramaswamy, A. (2017). A review on fly ash characteristics—Towards promoting high volume utilization in developing sustainable concrete. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2017.01.114.

  • Jang, J. G., Kim, H. J., Kim, H. K., & Lee, H. K. (2016). Resistance of coal bottom ash mortar against the coupled deterioration of carbonation and chloride penetration. Materials and Design. https://doi.org/10.1016/j.matdes.2015.12.074.

  • Jaturapitakkul, C., & Cheerarot, R. (2003). Development of bottom ash as Pozzolanic material. Journal of Materials in Civil Engineering. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:1(48).

  • Jayaranjan, M. L. D., van Hullebusch, E. D., & Annachhatre, A. P. (2014). Reuse options for coal fired power plant bottom ash and Fly ash. Reviews in Environmental Science and Biotechnology. https://doi.org/10.1007/s11157-014-9336-4.

  • Kim, H. K. (2015). Utilization of sieved and ground coal bottom ash powders as a coarse binder in high-strength mortar to improve workability. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2015.05.017.

  • Kumar, S., Gandhi, B. K., & Mohapatra, S. K. (2014). Performance characteristics of centrifugal slurry pump with multi-sized particulate bottom and fly ash mixtures. Particulate Science and Technology. https://doi.org/10.1080/02726351.2014.894163.

  • Lv, W., Sun, Z., & Su, Z. (2020). Study of seawater mixed one-part alkali activated GGBFS-Fly ash. Cement and Concrete Composites, 106(October 2019), 103484. https://doi.org/10.1016/j.cemconcomp.2019.103484.

    Article  Google Scholar 

  • Mishra, J., Das, S. K., Krishna, R. S., & Nanda, B. (2020). Utilization of ferrochrome ash as a source material for production of Geopolymer concrete for a cleaner sustainable environment. Indian Concrete Journal, 94(7), 40–49.

    Google Scholar 

  • Mishra, J., Das, S. K., Singh, S. K., & Mustakim, S. M. (2019). Development of Geopolymer concrete for the protection of environment: A greener alternative to cement. International Journal of Civil Engineering, 6(3), 41–47. https://doi.org/10.14445/23488352/ijce-v6i3p106.

    Article  Google Scholar 

  • Mogili, S., Mudavath, H., Gonavaram, K. K., & Paluri, Y. (2020). Strength and resilient behavior of lime modified pond ash as pavement layer. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.02.168.

  • Mohammadinia, A., Arulrajah, A., Horpibulsuk, S., & Chinkulkijniwat, A. (2017). Effect of fly ash on properties of crushed brick and reclaimed asphalt in pavement base/subbase applications. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2016.09.039.

  • Mustakim, S. M., Das, S. K., Mishra, J., Aftab, A., Alomayri, T. S., Assaedi, H. S., & Kaze, C. R. (2020). Improvement in fresh, mechanical and microstructural properties of fly ash- blast furnace slag based geopolymer concrete by addition of nano and micro silica. Silicon. https://doi.org/10.1007/s12633-020-00593-0.

  • Naganathan, S., Mohamed, A. Y. O., & Mustapha, K. N. (2015). Performance of bricks made using fly ash and bottom ash. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2015.08.068.

  • Nath, P., and Sarker, P. K. (2012). Geopolymer Concrete for Ambient Curing Condition. Australasian Structural Engineering Conference 2012: The Past, Present and Future of Structural Engineering.

    Google Scholar 

  • Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of FLY ash geopolymer concrete cured in ambient condition. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2014.05.080.

  • Ngohpok, C., Sata, V., Satiennam, T., Klungboonkrong, P., & Chindaprasirt, P. (2018). Mechanical properties, thermal conductivity, and sound absorption of pervious concrete containing recycled concrete and bottom ash aggregates. KSCE Journal of Civil Engineering. https://doi.org/10.1007/s12205-017-0144-6.

  • Nochaiya, T., Wongkeo, W., & Chaipanich, A. (2010). Utilization of Fly ash with silica fume and properties of Portland cement-fly ash-silica fume concrete. Fuel. https://doi.org/10.1016/j.fuel.2009.10.003.

  • NTPC Ash Utilization Division (2013). Fly ash for cement concrete. Noida–201301: NTPC Limited. https://www.ntpc.co.in/en/environment/ash-utilisation

  • Oruji, S., Brake, N. A., Nalluri, L., & Guduru, R. K. (2017). Strength activity and microstructure of blended ultra-fine coal bottom ash-cement mortar. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2017.07.088.

  • Osholana, T. S., Dludlu, M. K., Oboirien, B., & Sadiku, R. (2020). Enhanced reactivity of Geopolymers produced from fluidized bed combustion bottom ash. South African Journal of Chemical Engineering. https://doi.org/10.1016/j.sajce.2020.06.006.

  • Ouyang, S., Chen, W., Zhang, Z., Li, X., & Zhu, W. (2020). Experimental study of one-part geopolymer using different alkali sources. Journal of Physics: Conference Series, 1605, 012155. https://doi.org/10.1088/1742-6596/1605/1/012155.

    Article  Google Scholar 

  • Palomo, A., Blanco-Varela, M. T., Granizo, M. L., Puertas, F., Vazquez, T., & Grutzeck, M. W. (1999a). Chemical stability of cementitious materials based on Metakaolin. Cement and Concrete Research. https://doi.org/10.1016/S0008-8846(99)00074-5.

  • Palomo, A., Grutzeck, M. W., & Blanco, M. T. (1999b). Alkali-activated Fly ashes: A cement for the future. Cement and Concrete Research. https://doi.org/10.1016/S0008-8846(98)00243-9.

  • Pattanaik, S., Parhi, P. K., Das, D., & Samal, A. K. (2019). Acacia Concinna: A natural dispersant for stabilization and transportation of Fly ash-water slurry. Journal of the Taiwan Institute of Chemical Engineers. https://doi.org/10.1016/j.jtice.2019.03.020.

  • Pyo, S., & Kim, H. K. (2017). Fresh and hardened properties of ultra-high performance concrete incorporating coal bottom ash and slag powder. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2016.10.109.

  • Queralt, I., Querol, X., López-Soler, A., & Plana, F. (1997). Use of coal fly ash for ceramics: A case study for a large Spanish Power Station. Fuel. https://doi.org/10.1016/s0016-2361(97)00024-0.

  • Ramadoss, P., & Sundararajan, T. (2014). Utilization of lignite-based bottom ash as partial replacement of fine aggregate in masonry mortar. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-013-0703-1.

  • Ravina, D. (1997) Properties of fresh concrete incorporating a high volume of fly ash as partial fine sand replacement. Mat. Struct. 30, 473–479. https://doi.org/10.1007/BF02524775

  • Rangan, B. V. (2014). Geopolymer concrete for environmental protection. Indian Concrete Journal, 88, 41.

    Google Scholar 

  • Reddy, B. V. V., & Gourav, K. (2011). Strength of lime-fly ash compacts using different curing techniques and gypsum additive. Materials and Structures/Materiaux et Constructions. https://doi.org/10.1617/s11527-011-9738-5.

  • Santos, C. R., Tubino, R. M. C., & Schneider, I. A. H. (2015). Mineral processing and characterization of coal waste to be used as fine aggregates for concrete paving blocks. Revista IBRACON de Estruturas e Materiais. https://doi.org/10.1590/s1983-41952015000100004.

  • Singh, M., & Siddique, R. (2013). Effect of coal bottom ash as partial replacement of sand on properties of concrete. Resources, Conservation and Recycling. https://doi.org/10.1016/j.resconrec.2012.12.006.

  • Singh, M., & Siddique, R. (2016). Effect of coal bottom ash as partial replacement of sand on workability and strength properties of concrete. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2015.08.001.

  • Statista Research Department (2013). Cement Production Worldwide 2030—Statistic. https://www.statista.com/statistics/373845/global-cement-production-forecast/

  • Sutcu, M., Erdogmus, E., Gencel, O., Gholampour, A., Atan, E., & Ozbakkaloglu, T. (2019). Recycling of bottom ash and fly ash wastes in eco-friendly clay brick production. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.06.017.

  • Thomas, M. D. A. (2007). Optimizing the use of fly ash in concrete. Portland Cement Association.

    Google Scholar 

  • Torkittikul, P., Nochaiya, T., Wongkeo, W., & Chaipanich, A. (2017). Utilization of coal bottom ash to improve thermal insulation of construction material. Journal of Material Cycles and Waste Management. https://doi.org/10.1007/s10163-015-0419-2.

  • Ul Haq, Kunjalukkal Padmanabhan, E. S., & Licciulli, A. (2014). Synthesis and characteristics of fly ash and bottom ash based geopolymers—A comparative study. Ceramics International. https://doi.org/10.1016/j.ceramint.2013.10.012.

  • Van Jaarsveld, J. G. S., Van Deventer, J. S. J., & Lukey, G. C. (2002). The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers. Chemical Engineering Journal. https://doi.org/10.1016/S1385-8947(02)00025-6.

  • Vassilev, S. V., & Vassileva, C. G. (2007). A new approach for the classification of coal fly ashes based on their origin, composition, properties, and behaviour. Fuel. https://doi.org/10.1016/j.fuel.2006.11.020.

  • Wang, L., He, S., Sun, Z., & Ma, E. (2016). New technology and application of brick making with coal fly ash. Journal of Material Cycles and Waste Management. https://doi.org/10.1007/s10163-015-0368-9.

  • WCA (2019). Coal & Electricity | World Coal Association. 2019. https://www.worldcoal.org/coal/uses-coal/coal-electricity

  • White, S. C., & Case, E. D. (1990). Characterization of fly ash from coal-fired power plants. Journal of Materials Science. https://doi.org/10.1007/BF00580153.

  • Wongsa, A., Zaetang, Y., Sata, V., & Chindaprasirt, P. (2016). Properties of lightweight fly ash geopolymer concrete containing bottom ash as aggregates. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2016.02.135.

  • Zhang, Z., Qian, J., You, C., & Changhua, H. (2012). Use of circulating fluidized bed combustion fly ash and slag in autoclaved brick. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2012.03.006.

Download references

Acknowledgments

Since this chapter has been written during the COVID 19 pandemic, the first author (S.K. Das) was at home during the manuscript preparation, he wants to thank his parents (Mr. Santosh K. Das and Mrs. Sasmita Das) for their continuous help and support in making the home a perfect place to write peacefully. All the authors are thankful to CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, India, for the characterization study of coal ashes provided in the study. Mr. Jyotirmoy Mishra (Civil Engineering Department, VSSUT, Burla, India) and Mr. RS Krishna (CSIR-IMMT, Bubaneswar, India) are also acknowledged for their valuable inputs in preparation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaswat Kumar Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S.K., Mishra, S., Das, D., Mustakim, S.M., Kaze, C.R., Parhi, P.K. (2021). Characterization and Utilization of Coal Ash for Synthesis of Building Materials. In: Jyothi, R.K., Parhi, P.K. (eds) Clean Coal Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-68502-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68502-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68501-0

  • Online ISBN: 978-3-030-68502-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics