Skip to main content

Towards Mesh-Free Patient-Specific Mitral Valve Modeling

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges (STACOM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12592))

Abstract

Computational modeling is a tool that has gained importance recently to better understand valve physiopathology, to assess safety and efficacy of cardiovascular devices and as a supporting tool for therapy planning. Mesh-based methods, such as the Finite Element Method (FEM), have shown high accuracy and application modeling the mitral valve (MV). However, when it comes to irregular and complex geometries, FEM techniques suffer from well-documented limitations, such as the labor and time-consuming intrinsic need of a mesh. In this work, novel structural models of the MV and mitral valve regurgitation (MVR) dynamics are presented using a mesh-free method. Obtained results show that the developed models are capable of reproducing MV and MVR behaviour with good agreement with respect to both in-vivo and in-silico studies, in terms of valve closure and opening, valve deformation, as well as stress magnitudes. This paper shows that mesh-free methods have the potential to become a powerful alternative to the currently most used modeling approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gao, H., et al.: Modelling Mitral Valvular Dynamics - current trend and future directions: review of MV modelling. Int. J. Numer. Meth. Biomed. Eng. 33(12) (2016)

    Google Scholar 

  2. Zhang, L., Ademiloye, A., Liew, K.: Meshfree and particle methods in biomechanics: prospects and challenges. Arch. Comput. Meth. Eng. 26, 1547–1576 (2019)

    Article  MathSciNet  Google Scholar 

  3. Lluch, E., et al.: Calibration of a fully coupled electromechanical meshless computational model of the heart with experimental data. Comput. Meth. Appl. Mech. Eng. 364, 112869 (2020)

    Article  MathSciNet  Google Scholar 

  4. Lluch, Ăˆ., De Craene, M., Bijnens, B., Sermesant, M., Noailly, J., Camara, O., Morales, H.G.: Breaking the state of the heart: meshless model for cardiac mechanics. Biomech. Model. Mechanobiol. 18(6), 1549–1561 (2019). https://doi.org/10.1007/s10237-019-01175-9

    Article  Google Scholar 

  5. Chen, J., Beraun, J., Carney, T.: A corrective smoothed particle method for boundary value problems in heat conduction. Int. J. Num. Meth. Eng. 46(2), 231–252 (1999)

    Article  Google Scholar 

  6. Gray, J., Monaghan, J., Swift, R.: SPH elastic dynamics. Comput. Meth. Appl. Mech. Eng. 49(50), 6641–6662 (2001)

    Article  Google Scholar 

  7. Wang, J., Chan, D.: Frictional contact algorithms in SPH for the simulation of soil-structure interaction. Int. J. Num. Anal. Meth. Geomech. 38(7), 747–770 (2014)

    Article  Google Scholar 

  8. Xiao, Y.H., et al.: Simulation of normal perforation of aluminum plates using axisymmetric smoothed particle hydrodynamics with contact algorithm. Int. J. Comput. Meth. 10(3), 1350039 (2013)

    Article  MathSciNet  Google Scholar 

  9. Liu, M.B., Liu, G.R.: Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Meth. Eng. 17, 25–76 (2010)

    Article  MathSciNet  Google Scholar 

  10. Seo, S., Min, O.: Axisymmetric SPH simulation of elasto-plastic contact in the low velocity impact. Comput. Phys. Commun. 175, 583–603 (2006)

    Article  MathSciNet  Google Scholar 

  11. Tautz, L., et al.: CT segmented mitral valves in open state. Zenodo (2019)

    Google Scholar 

  12. Lim, K., Yeo, J., Duran, C.: Three-dimensional asymmetrical modeling of the mitral valve: a finite element study with dynamic boundaries. J. Heart Valve Dis. 14(3), 386–392 (2005)

    Google Scholar 

  13. Maisano, F.: An annular prosthesis for the treatment of functional mitral regurgitation: finite element model analysis of a dog bone-shaped ring prosthesis. Ann. Thorac. Surg. 79(4), 1268–1275 (2005)

    Article  Google Scholar 

  14. Sanfilippo, A., et al.: Papillary muscle traction in mitral valve prolapse: quantification by two-dimensional echocardiography. J. Am. Coll. Cardiol. 19(3), 1268–1275 (1992)

    Article  Google Scholar 

  15. Kaiser, A., McQueen, D., Peskin, C.: Modeling the Mitral Valve. Wiley, New York (2019)

    Book  Google Scholar 

  16. Gabriel, V., Kamp, O., Visser, C.: Three-dimensional echocardiography in mitral valve disease. Eur. J. Echocardiogr. 6(6), 443–454 (2005)

    Article  Google Scholar 

  17. Rim, Y., et al.: Personalized computational modeling of mitral valve prolapse: virtual leaflet resection. PLoS ONE 10(6), e0130906 (2015)

    Article  Google Scholar 

  18. Caballero, A., et al.: New insights into mitral heart valve prolapse after chordae rupture through fluid-structure interaction computational modeling. Sci. Rep. 8, 17306 (2018)

    Article  Google Scholar 

  19. Izumi, S., et al.: Mechanism of mitral regurgitation in patients with myocardial infarction: a study using real-time two-dimensional doppler flow imaging and echocardiography. Circulation 76(4), 777–785 (1987)

    Article  Google Scholar 

  20. Votta, E., et al.: Mitral valve finite-element modelling from ultrasound data: a pilot study for a new approach to understand mitral function and clinical scenarios. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 366(1879), 3411–3434 (2008)

    Article  Google Scholar 

  21. Yuan, Q., et al.: Fluid structure interaction study of bioprosthetic heart valve with FESPH method. Int. J. Adv. Comput. Technol. 8, 695–702 (2013)

    Google Scholar 

  22. Mao, W., et al.: Fully-coupled fluid-structure interaction simulation of the aortic and mitral valves in a realistic 3D left ventricle model. PLOS ONE 12(9), e0184729 (2017)

    Article  Google Scholar 

  23. Antonci, C., et al.: Numerical simulation of fluid-structure interaction by SPH. N. Engl. J. Med. 339(24), 1725–1733 (1998)

    Article  Google Scholar 

  24. Amanifard, N., Rahbar, B., Hesan, M.: Numerical simulation of the mitral valve opening using smoothed particle hydrodynamics. In: Proceedings of the World Congress on Engineering, vol. 3 (2011)

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge clinicians from the Cardiology Service of Hospital ClĂ­nic (Barcelona) for clinical consultation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judit Ros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ros, J., Camara, O., Hermida, U., Bijnens, B., Morales, H.G. (2021). Towards Mesh-Free Patient-Specific Mitral Valve Modeling. In: Puyol Anton, E., et al. Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges. STACOM 2020. Lecture Notes in Computer Science(), vol 12592. Springer, Cham. https://doi.org/10.1007/978-3-030-68107-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68107-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68106-7

  • Online ISBN: 978-3-030-68107-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics