Skip to main content

Long-Term Field Experiments (LTEs)—Importance, Overview, Soil Organic Matter

  • Chapter
  • First Online:
Exploring and Optimizing Agricultural Landscapes

Part of the book series: Innovations in Landscape Research ((ILR))

Abstract

In the context of climate change, at the end of the last century, humus became the centre of attention. Long-term field experiments (LTEs) are indispensable for practical soil research and for solving current problems. The evaluation of 79 long-term experiments worldwide leads to the following statements: All considerations on humus require a distinction between permanent and nutrient humus. Permanent humus is long-term stable. It is defined as humus content that is not undershot under field conditions in the absence of any fertilization and cultivation of humus-eating crops (bare fallow). In the European LTEs, the content of permanent humus C is mainly between 0.3% Corg (sandy soil) and 1.5% Corg (black earth). 90% of the organic primary substances fed to the soil, based on the starting material of vegetable biomass, are re-mineralized and returned to the atmosphere. The contents of total humus C are between 0.15% Corg and 2.29% Corg over 68 LTEs. In 31 out of 68 LTEs, the Corg content of the optimally organic and mineral fertilized variants was less than 1% Corg (= 1.724% humus). The nutrient humus C is 0.3% on average for 68 LTEs and often accounts for less than 0.2% of Corg, i.e. about 10 t/ha (at 4500 t/ha soil in the processing (A) horizon). On average across 68 LTEs, mineral fertilization increases the Corg content by 0.06 to 0.08% compared to “unfertilized”. On average across 42 LTEs, 11 t/ha of farmyard manure (FYM) annually increases the Corg content compared to “unfertilized” by 0.24% Corg. The mineral fertilizer ensures a high nutritional yield for the people and is also the basis of a sufficient humus supply. The results of 350 comparisons quantified the effect of combined organic-mineral fertilization compared to only optimal mineral fertilization, indicating that there was a 6% yield increase. Data indicate that models of organic carbon cycling in soils require permanent verification and calibration by representative LTEs. Data also show that current political goals for climate change mitigation via carbon sequestration on cropland, such as the 4 per 1000 initiative, are too optimistic. An annual increase in carbon content by 4‰ (or 1.2 billion tonnes of carbon every year) is practically impossible under the conditions of the twenty-first century, which means high yields and optimal organic and mineral fertilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bellamy PH, Loveland PJ, Bradley RI, Lark RM, Kirk JD (2005) Carbon losses from all soils across England and Wales 1978–2003. 19. Nature 437:245–248. https://doi.org/10.1038/nature04038

    Article  CAS  PubMed  Google Scholar 

  • Debreczeni K, Körschens M (2003) Long-term field experiments of the world. Archiv Agron Soil Sci 49:465–483

    Article  Google Scholar 

  • Ebertseder T, Munzert M, Horn D, Maier H (2010) Ableitung von Einflussfaktoren auf die Humusgehalte von Böden durch flächenbezogene Auswertung von Bodenuntersuchungsdaten. In: Engels et al.: Humusbilanzierung landwirtschaftlicher Böden- Einflussfaktoren und deren Auswirkungen; Bericht des VDLUFA an die Bundesanstalt für Landwirtschaft und Ernährung, Speyer, pp 252–278

    Google Scholar 

  • Haider K (1996) Biochemie des Bodens. Ferdinand Enke Verlag Stuttgart, Stuttgart, p 174

    Google Scholar 

  • Johnston AE, Poulton PR, Coleman K, Macdonald AJ, White RP (2017) Changes in soil organic matter over 70 years in continuous arable and ley–arable rotations on a sandy loam soil in England. Eur J Soil Sci. https://doi.org/10.1111/ejss.12415

    Article  PubMed  PubMed Central  Google Scholar 

  • IPCC Review Report (2013) IPCC fifth assessment report: climate change (2013) The physical science basis (IPCC WGI AR5) Source(s): Cambridge University Press, Intergovernmental Panel on Climate Change (IPCC) (www.ipcc.ch/report/ar5/wg1/). Accessed 24 Oct 2019

  • Körschens M (1980) Die Abhängigkeit der organischen Bodensubstanz von Standortfaktoren und acker- und pflanzenbaulichen Maßnahmen, ihre Beziehungen zu Bodeneigenschaften und Ertrag sowie Ableitung von ersten Bodenfruchtbarkeitskennziffern für den Gehalt des Bodens an organischer Substanz. Promotionsarbeit zur Erlangung des akademischen Grades doctor scientiae agriculturarum (Dr. sc. ar.) an der Akademie der Landwirtschaftswissenschaften der DDR, 130 p

    Google Scholar 

  • Körschens M, Stegemann K, Pfefferkorn A, Weise V, Müller A (1994) Der Statische Düngungsversuch Bad Lauchstädt nach 90 Jahren. B. G. Teubner Verlagsgesellschaft Stuttgart. Leipzig (1994), 180 p

    Google Scholar 

  • Körschens M, Waldschmidt U (1995) Ein Beitrag zur Quantifizierung der Beziehungen zwischen Humusgehalt und bodenphysikalischen Eigenschaften. - Arch. Acker- Pfl. Boden. 39:165–173

    Google Scholar 

  • Körschens M (2002) Die Rolle der organischen Bodensubstanz für Bodenfruchtbarkeit und Umwelt. In: Bodenfruchtbarkeit und multifunktionale Landwirtschaft. - Tagung des Verban des der Landwirtschaftskammern e. V. und des Bundesarbeitskreises Düngung (BAD) am 24. April 2002 in Würzburg, 51–80

    Google Scholar 

  • Körschens M (2010) Der organische Kohlenstoff im Boden (Corg) – Bedeutung, Bestimmung, Bewertung. Archiv Agron Soil Sci 56(4c):375–392

    Article  Google Scholar 

  • Körschens M (2017). Methodische Probleme der Humusbestimmung – Boden als Kohlenstoffsenke? Mitteilungen Agrarwissenschaften, Vol 31, pp 72–86. Eds.: Merbach W, Wiche O, Augustin J. Verlag Dr. Köster, Berlin

    Google Scholar 

  • Körschens M, Breitschuh G, Eckert H (2018) Humus als CO2—Senke—eine fatale Illusion. http://files.agrarfakten.de/200000233–3eaf83faaa/AF%20Senke%2036%202018_07_24.pdf. Accessed 22 Oct 2019

  • Körschens M, Albert E, Armbruster M, Barkusky M, Baumecker M, Behle-Schalk L, Bischoff R, Cergan Z, Ellmer F, Herbst F, Hoffmann S, Hofmann B, Kismanyoky T, Kubat J, Kunzova E, Lopez-Fando C, Merbach I, Merbach W, Teresa Pardor M, Rogasik J, Rühlmann J, Spiegel H, Schulz E, Tajnsek A, Toth Z, Wegener H, Zorn W (2013) Effect of different mineral and organic fertilization on yield, N-uptake, C- and N-balance, as well as C-content and C-dynamics in the soil, derived from the results of 20 long-term field experiments in the 21th century. Archiv Agron Soil Sci 59:1017–1040. https://doi.org/10.1080/03650340.2012.704548

    Article  Google Scholar 

  • Körschens M, Albert E, Baumecker M, Ellmer F, Grunert M, Hoffmann S, Kismanyoky T, Kubat J, Kunzova E, Marx M, Rogasik J, Rinklebe J, Rühlmann J, Schilli C, Schröter H, Schroetter S, Schweizer K, Toth Z, Zimmer J, Zorn W (2014) Humus und Klimaänderung - Ergebnisse aus 15 langjährigen Dauerfeldversuchen. Archiv Agron Soil Sci 60(11):1485–1517. https://doi.org/10.1080/03650340.2014.892204

    Article  CAS  Google Scholar 

  • Leopoldina (2012) Bioenergie: Möglichkeiten und Grenzen. Nationale Akademie der Wissenschaften Leopoldina (Ed.). 50 p https://www.leopoldina.org/uploads/tx_leopublication/201207_Stellungnahme_Bioenergie_kurz_de_en_final.pdf. Accessed 22 Oct 2019

  • Marx M, Rinklebe J, Kastler M, Molt CH, Kaufmann-Boll C, Lazar S, Lischeid G, Schilli C, Körschens M (2016) Bestimmung der Veränderungen des Humusgehalts und deren Ursachen auf Ackerböden Deutschlands, Teil 3: Erarbeitung fachlicher, rechtlicher und organisatorischer Grundlagen zur Anpassung an den Klimawandel aus Sicht des Bodenschutzes. Umweltforschungsplan FKZ 3711 71 213 3, 90 p

    Google Scholar 

  • Müller G (1980) Bodenkunde.- Deutscher Landwirtsch.- Verl., Berlin. 392 p

    Google Scholar 

  • Pathak H, Byjesh K, Chakrabarti B, Aggarwal PK (2011) Potential and cost of carbon sequestration in Indian agriculture: Estimates from long-term field experiments. Field Crop Res 120:102–111

    Article  Google Scholar 

  • Poulton P, Johnston J, Macdonald A, White R, Powlson D (2018) Major limitations to achieving “4 per 1000” increases in soil organic carbon stock in temperate regions: Evidence from long-term experiments at Rothamsted Research, pp 1–22. United Kingdom. Wiley Global Change Biology. https://doi.org/10.1111/gcb.14066

  • Raggam A (2008) Biomasse stoppt Klimawandel, dvb- verlag, 2nd ed. 165 p

    Google Scholar 

  • Merbach I (2017) Helmholtz Zentrum für Umweltforschung – UFZ, Versuchsstation Bad Lauchstädt, 2017. (Versuchsfeldführer), 35 p

    Google Scholar 

  • Roemer T, Scheffer F (1959) Lehrbuch des Ackerbaues, 5th edn. Parey Berlin, Hamburg, p 555

    Google Scholar 

  • Reijnevelt A, van Wensem J, Oenema O (2009) Soil organic carbon contents of agricultural land in the Netherlands between 1984 and 2004. Geoderma 152(3–4):231–23

    Article  Google Scholar 

  • Rothamsted Research (2018), 28 Febr. 2018: Soil fails climate challenge www.rothamsted.ac.uk/rothamsted-reports. Accessed 24 Oct 2019

  • Scheub U, Schwarzer ST (2018) Die Humusrevolution. /III oekom. 240 p

    Google Scholar 

  • Schmalfuss K (1966) Pflanzenernährung und Bodenkunde. S. Hirzel Verlag Leipzig, 270 p

    Google Scholar 

  • Scholz S (1978) Beziehung zwischen OBS- Gehalt und Ertrag, abgeleitet aus Dauerversuchen. In: Synthetische Information. Bereich Bad Lauchstädt: Forschungszentrum für Bodenfruchtbarkeit Müncheberg, 25 p

    Google Scholar 

  • Van Groenigen JW, van Kessel C, Hungate BA, Oenema Oe, Powlson DS, van Groenigen KJ (2017) Sequestering soil organic carbon: a nitrogen Dilemma. Environ Sci Technol 51 (9): 4738–4739. https://doi.org/10.1021/acs.est.7b01427

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Körschens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Körschens, M. (2021). Long-Term Field Experiments (LTEs)—Importance, Overview, Soil Organic Matter. In: Mueller, L., Sychev, V.G., Dronin, N.M., Eulenstein, F. (eds) Exploring and Optimizing Agricultural Landscapes. Innovations in Landscape Research. Springer, Cham. https://doi.org/10.1007/978-3-030-67448-9_8

Download citation

Publish with us

Policies and ethics