Skip to main content

Overall Survival Prediction in Gliomas Using Region-Specific Radiomic Features

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology (MLCN 2020, RNO-AI 2020)

Abstract

In this paper, we explored predictive performance of region-specific radiomic models for overall survival classification task in BraTS 2019 dataset. We independently trained three radiomic models: single-region model which included radiomic features from whole tumor (WT) region only, 3-subregions model which included radiomic features from non-enhancing tumor (NET), enhancing tumor (ET), and edema (ED) subregions, and 6-subregions model which included features from the left and right cerebral cortex, the left and right cerebral white matter, and the left and right lateral ventricle subregions. A 3-subregions radiomics model relied on a physiology-based subdivision of WT for each subject. A 6-subregions radiomics model relied on an anatomy-based segmentation of tumor-affected regions for each subject which is obtained by a diffeomorphic registration with the Harvard-Oxford subcortical atlas. For each radiomics model, a subset of most predictive features was selected by ElasticNetCV and used to train a Random Forest classifier. Our results showed that a 6-subregions radiomics model outperformed the 3-subregions and WT radiomic models on the BraTS 2019 training and validation datasets. A 6-subregions radiomics model achieved a classification accuracy of 47.1% on the training dataset and a classification accuracy of 55.2% on the validation dataset. Among the single subregion models, Edema radiomics model and Left Lateral Ventricle radiomics model yielded the highest classification accuracy on the training and validation datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cha, S.: Update on brain tumor imaging: from anatomy to physiology. Am. J. Neuroradiol. 27(3), 475–487 (2006)

    MathSciNet  Google Scholar 

  2. Goodenberger, M.L., Jenkins, R.B.: Genetics of adult glioma. Cancer Genet. 205(12), 613–621 (2012)

    Article  Google Scholar 

  3. Louis, D.N., et al.: The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathologica 131(6), 803–820 (2016)

    Article  Google Scholar 

  4. Bi, W.L., Beroukhim, R.: Beating the odds: extreme long-term survival with glioblastoma. Neuro-Oncol. 16, 1159–1160 (2014)

    Article  Google Scholar 

  5. Banerjee, S., Arora, H.S., Mitra, S.: Ensemble of CNNs for segmentation of glioma sub-regions with survival prediction. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 37–49. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_4

    Chapter  Google Scholar 

  6. Sanghani, P., et al.: Overall survival prediction in glioblastoma multiforme patients from volumetric, shape and texture features using machine learning. Surg. Oncol. 27(4), 709–714 (2018)

    Article  Google Scholar 

  7. https://www.med.upenn.edu/cbica/brats2019

  8. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  9. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  10. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629 (2018)

  11. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The cancer imaging archive. Nat. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  12. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The cancer imaging archive 286 (2017)

    Google Scholar 

  13. Kao, P.-Y., Ngo, T., Zhang, A., Chen, J.W., Manjunath, B.S.: Brain tumor segmentation and tractographic feature extraction from structural MR images for overall survival prediction. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 128–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_12

    Chapter  Google Scholar 

  14. Puybareau, E., Tochon, G., Chazalon, J., Fabrizio, J.: Segmentation of gliomas and prediction of patient overall survival: a simple and fast procedure. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 199–209. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_18

    Chapter  Google Scholar 

  15. Pei, L., Vidyaratne, L., Monibor Rahman, M., Shboul, Z.A., Iftekharuddin, K.M.: Multimodal brain tumor segmentation and survival prediction using hybrid machine learning. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 73–81. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_7

    Chapter  Google Scholar 

  16. Kohl, S., et al.: A probabilistic U-Net for segmentation of ambiguous images. In: Advances in Neural Information Processing Systems (2018)

    Google Scholar 

  17. Feng, X., et al.: Brain tumor segmentation using an ensemble of 3D U-Nets and overall survival prediction using radiomic features. Front. Comput. Neurosci. 14, 25 (2020)

    Article  Google Scholar 

  18. Islam, M., Jose, V.J.M., Ren, H.: Glioma prognosis: segmentation of the tumor and survival prediction using shape, geometric and clinical information. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 142–153. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_13

    Chapter  Google Scholar 

  19. Islam, M., Ren, H.: Multi-modal PixelNet for brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 298–308. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_26

    Chapter  Google Scholar 

  20. Desikan, R.S., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3), 968–980 (2006)

    Article  Google Scholar 

  21. Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)

    Article  Google Scholar 

  22. https://github.com/ANTsX/ANTs/wiki/Anatomy-of-an-antsRegistration-call

  23. Avants, B.B., et al.: A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54(3), 2033–2044 (2011)

    Article  Google Scholar 

  24. Van Griethuysen, J.J.M., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104–e107 (2017)

    Article  Google Scholar 

  25. https://scikitlearn.org/0.15/modules/generated/sklearn.linear_model.ElasticNetCV.html

  26. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Macyszyn, L., et al.: Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro-oncology 18(3), 417–425 (2015)

    Article  Google Scholar 

  28. Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y.: Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 506–517. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_44

    Chapter  Google Scholar 

  29. Bukhari, S.T., Mohy-ud-Din, H.: A systematic evaluation of learning rate policies in training CNNs for brain tumor segmentation (2020, under review)

    Google Scholar 

Download references

Acknowledgement

This work was in part supported by a grant from the Higher Education Commission of Pakistan that has funded the National Center in Big Data and Cloud Computing and the Clinical and Translational Imaging Lab at LUMS. The authors wish to thank Syed Talha Bukhari in providing the multi-class segmentation maps for the BraTS 2019 validation dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Mohy-ud-Din .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shaheen, A., Burigat, S., Bagci, U., Mohy-ud-Din, H. (2020). Overall Survival Prediction in Gliomas Using Region-Specific Radiomic Features. In: Kia, S.M., et al. Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology. MLCN RNO-AI 2020 2020. Lecture Notes in Computer Science(), vol 12449. Springer, Cham. https://doi.org/10.1007/978-3-030-66843-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66843-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66842-6

  • Online ISBN: 978-3-030-66843-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics