Skip to main content

Air Pollutants and Neurological Disorders: From Exposure to Preventive Interventions

  • Chapter
  • First Online:
Environmental Contaminants and Neurological Disorders

Abstract

Air pollutants are referred to as chemicals, particles, or biological materials in the air. They primarily affect the heart and lungs resulting in various cardiovascular and respiratory complications. However, the association of air pollutants with neurological disorders such as Alzheimer’s, Epilepsy, Parkinson’s disease, and Stroke has been established. The air pollutants causing neurological disorders include nitrogen oxide, ozone, sulfur dioxide, carbon monoxide, lead, and particulate matter. The majority of the air pollutants are anthropogenic, originating from human activities such as industrial processes, power generation, fossil fuel combustion, and use of vehicle engines. Natural sources of pollutants include volcanic eruptions and forest fires. These pollutants enter the body through inhalation and reach to the central nervous system (CNS) where they cause tissue damage in the brain and affect molecular, inflammatory, and cellular pathways. Several animal, human, and cell culture studies have demonstrated the relationship of air pollutants with neuroinflammation, CNS oxidative stress, neuron damage, blood–brain barrier changes, and cerebrovascular damage. Prevention from detrimental effects of air pollutants can be limited by maintaining air safety levels, making policies, developing surveillance system, and collaborating with organizations involved environmental sciences. Moreover, production of energy from natural sources such as wind and solar power is another effective measure to control to the air pollutants–induced neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and health impacts of air pollution: a review. Front Public Health. 2020;8:14.

    Article  Google Scholar 

  2. Genc S, Zadeoglulari Z, Fuss SH, Genc K. The adverse effects of air pollution on the nervous system. J Toxicol. 2012;2012:782462.

    Article  CAS  Google Scholar 

  3. Bernstein JA, Alexis N, Barnes C, Bernstein IL, Nel A, Peden D, et al. Health effects of air pollution. J Allergy Clin Immunol. 2004;114(5):1116–23.

    Article  Google Scholar 

  4. Dockery DW. Epidemiologic evidence of cardiovascular effects of particulate air pollution. Environ Health Perspect. 2001;109(Suppl 4):483–6.

    Article  CAS  Google Scholar 

  5. Patel MM, Miller RL. Air pollution and childhood asthma: recent advances and future directions. Curr Opin Pediatr. 2009;21(2):235.

    Article  Google Scholar 

  6. Mills NL, Donaldson K, Hadoke PW, Boon NA, MacNee W, Cassee FR, et al. Adverse cardiovascular effects of air pollution. Nat Clin Pract Cardiovasc Med. 2009;6(1):36–44.

    Article  CAS  Google Scholar 

  7. Darrow LA, Klein M, Flanders WD, Waller LA, Correa A, Marcus M, et al. Ambient air pollution and preterm birth: a time-series analysis. Epidemiology. 2009;20(5):689.

    Article  Google Scholar 

  8. Parker JD, Mendola P, Woodruff TJ. Preterm birth after the Utah Valley Steel Mill closure: a natural experiment. Epidemiology. 2008;19(6):820–3.

    Article  Google Scholar 

  9. Xu X, Sharma RK, Talbott EO, Zborowski JV, Rager J, Arena VC, et al. PM10 air pollution exposure during pregnancy and term low birth weight in Allegheny County, PA, 1994–2000. Int Arch Occup Environ Health. 2011;84(3):251–7.

    Article  CAS  Google Scholar 

  10. Rich DQ, Demissie K, Lu S-E, Kamat L, Wartenberg D, Rhoads GG. Ambient air pollutant concentrations during pregnancy and the risk of fetal growth restriction. J Epidemiol Community Health. 2009;63(6):488–96.

    Article  CAS  Google Scholar 

  11. Xu X, Ha SU, Basnet R. A review of epidemiological research on adverse neurological effects of exposure to ambient air pollution. Front Public Health. 2016;4:157.

    Article  Google Scholar 

  12. Lee KK, Miller MR, Shah AS. Air pollution and stroke. J Stroke. 2018;20(1):2.

    Article  Google Scholar 

  13. Palacios N. Air pollution and Parkinson’s disease–evidence and future directions. Rev Environ Health. 2017;32(4):303–13.

    Article  CAS  Google Scholar 

  14. Oudin A. Short review: air pollution, noise and lack of greenness as risk factors for Alzheimer’s disease-epidemiologic and experimental evidence. Neurochem Int. 2020;134:104646.

    Article  CAS  Google Scholar 

  15. Block ML, Calderón-Garcidueñas L. Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009;32(9):506–16.

    Article  CAS  Google Scholar 

  16. Craig L, Brook JR, Chiotti Q, Croes B, Gower S, Hedley A, et al. Air pollution and public health: a guidance document for risk managers. J Toxicol Environ Health A. 2008;71(9–10):588–698.

    Article  CAS  Google Scholar 

  17. Terzano C, Di Stefano F, Conti V, Graziani E, Petroianni A. Air pollution ultrafine particles: toxicity beyond the lung. Eur Rev Med Pharmacol Sci. 2010;14(10):809–21.

    CAS  Google Scholar 

  18. Emberson LD, Pleijel H, Ainsworth EA, Van den Berg M, Ren W, Osborne S, et al. Ozone effects on crops and consideration in crop models. Eur J Agron. 2018;100:19–34.

    Article  CAS  Google Scholar 

  19. Prüss-Üstün A, Fewtrell L, Landrigan PJ, Ayuso-Mateos JL. Lead exposure. In: Ezzati M, Lopez AD, Rodgers A, Murray CJL, editors. Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors. Geneva: World Health Organization; 2004.

    Google Scholar 

  20. Sciences NIoEH. Lead and your health. 2013 [August 20, 2020]. https://www.niehs.nih.gov/health/materials/lead_and_your_health_508.pdf.

  21. Farhat A, Mohammadzadeh A, Balali-Mood M, Aghajanpoor-Pasha M, Ravanshad Y. Correlation of blood lead level in mothers and exclusively breastfed infants: a study on infants aged less than six months. Asia Pac J Med Toxicol. 2013;2(4):150–2.

    CAS  Google Scholar 

  22. Assi M, Hezmee M, Haron A, Sabri M, Rajion MA. The detrimental effects of lead on human and animal he alth. Vet World. 2016;9(6):660–71.

    Article  CAS  Google Scholar 

  23. Cheung K, Daher N, Kam W, Shafer MM, Ning Z, Schauer JJ, et al. Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM10–2.5) in the Los Angeles area. Atmos Environ. 2011;45(16):2651–62.

    Article  CAS  Google Scholar 

  24. Zhang L, Yang Y, Li Y, Qian ZM, Xiao W, Wang X, et al. Short-term and long-term effects of PM2.5 on acute nasopharyngitis in 10 communities of Guangdong, China. Sci Total Environ. 2019;688:136–42.

    Article  CAS  Google Scholar 

  25. Kelishadi R, Poursafa P. Air pollution and non-respiratory health hazards for children. Arch Med Sci. 2010;6(4):483.

    Article  Google Scholar 

  26. Heal MR, Kumar P, Harrison RM. Particles, air quality, policy and health. Chem Soc Rev. 2012;41(19):6606–30.

    Article  CAS  Google Scholar 

  27. Richmond-Bryant J, Owen RC, Graham S, Snyder M, McDow S, Oakes M, et al. Estimation of on-road NO2 concentrations, NO2/NOX ratios, and related roadway gradients from near-road monitoring data. Air Qual Atmos Health. 2017;10(5):611–25.

    Article  CAS  Google Scholar 

  28. Hesterberg TW, Bunn WB, McClellan RO, Hamade AK, Long CM, Valberg PA. Critical review of the human data on short-term nitrogen dioxide (NO2) exposures: evidence for NO2 no-effect levels. Crit Rev Toxicol. 2009;39(9):743–81.

    Article  CAS  Google Scholar 

  29. Chen T-M, Kuschner WG, Gokhale J, Shofer S. Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects. Am J Med Sci. 2007;333(4):249–56.

    Article  Google Scholar 

  30. Bezirtzoglou E, Alexopoulos A. Ozone history and ecosystems: a goliath from impacts to advance industrial benefits and interests, to environmental and therapeutical strategies. In: Bakker SA, editor. Ozone depletion, chemistry and impacts. Hauppauge: Nova Science; 2008. p. 135–46.

    Google Scholar 

  31. Villányi V, Turk B, Batic F, Csintalan Z. Ozone pollution and its bioindication. In: Villányi V, editor. Air pollution, vol. 153. Rijeka: SCIYO; 2010.

    Chapter  Google Scholar 

  32. Watson JT, Gayer M, Connolly MA. Epidemics after natural disasters. Emerg Infect Dis. 2007;13:1–5.

    Article  Google Scholar 

  33. McCarthy JT, Pelle E, Dong K, Brahmbhatt K, Yarosh D, Pernodet N. Effects of ozone in normal human epidermal keratinocytes. Exp Dermatol. 2013;22(5):360–1.

    Article  CAS  Google Scholar 

  34. Gryparis A, Forsberg B, Katsouyanni K, Analitis A, Touloumi G, Schwartz J, et al. Acute effects of ozone on mortality from the “air pollution and health: a European approach” project. Am J Respir Crit Care Med. 2004;170(10):1080–7.

    Article  Google Scholar 

  35. Burt P. Atmospheric pollution: history, science, and regulation by Mark Z. Jacobson. Cambridge: Cambridge University Press; 2002. xi+399 pp. Paperback, hardback. ISBNs 052101044 6, 052181171 6. Weather. 2003;58(6):243–4.

    Google Scholar 

  36. Mateen FJ, Brook RD. Air pollution as an emerging global risk factor for stroke. JAMA. 2011;305(12):1240–1.

    Article  CAS  Google Scholar 

  37. Lauer K. Environmental risk factors in multiple sclerosis. Expert Rev Neurother. 2010;10(3):421–40.

    Article  Google Scholar 

  38. Lokken RP, Wellenius GA, Coull BA, Burger MR, Schlaug G, Suh HH, et al. Air pollution and risk of stroke: underestimation of effect due to misclassification of time of event onset. Epidemiology. 2009;20(1):137.

    Article  Google Scholar 

  39. Lisabeth LD, Escobar JD, Dvonch JT, Sánchez BN, Majersik JJ, Brown DL, et al. Ambient air pollution and risk for ischemic stroke and transient ischemic attack. Ann Neurol. 2008;64(1):53–9.

    Article  Google Scholar 

  40. Kettunen J, Lanki T, Tiittanen P, Aalto PP, Koskentalo T, Kulmala M, et al. Associations of fine and ultrafine particulate air pollution with stroke mortality in an area of low air pollution levels. Stroke. 2007;38(3):918–22.

    Article  CAS  Google Scholar 

  41. Guo L, Li B, Miao J-J, Yun Y, Li G-K, Sang N. Seasonal variation in air particulate matter (PM10) exposure-induced ischemia-like injuries in the rat brain. Chem Res Toxicol. 2015;28(3):431–9.

    Article  CAS  Google Scholar 

  42. Davis DA, Akopian G, Walsh JP, Sioutas C, Morgan TE, Finch CE. Urban air pollutants reduce synaptic function of CA1 neurons via an NMDA/NȮ pathway in vitro. J Neurochem. 2013;127(4):509–19.

    Article  CAS  Google Scholar 

  43. Morgan TE, Davis DA, Iwata N, Tanner JA, Snyder D, Ning Z, et al. Glutamatergic neurons in rodent models respond to nanoscale particulate urban air pollutants in vivo and in vitro. Environ Health Perspect. 2011;119(7):1003–9.

    Article  CAS  Google Scholar 

  44. Sutherland GT, Siebert GA, Kril JJ, Mellick GD. Knowing me, knowing you: can a knowledge of risk factors for Alzheimer’s disease prove useful in understanding the pathogenesis of Parkinson’s disease? J Alzheimers Dis. 2011;25(3):395–415.

    Article  Google Scholar 

  45. Moulton PV, Yang W. Air pollution, oxidative stress, and Alzheimer’s disease. J Environ Public Health. 2012;2012:472751.

    Article  CAS  Google Scholar 

  46. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56.

    Article  CAS  Google Scholar 

  47. Migliore L, Coppedè F. Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat Res. 2009;674(1–2):73–84.

    Article  CAS  Google Scholar 

  48. Ranft U, Schikowski T, Sugiri D, Krutmann J, Krämer U. Long-term exposure to traffic-related particulate matter impairs cognitive function in the elderly. Environ Res. 2009;109(8):1004–11.

    Article  CAS  Google Scholar 

  49. Fernandes M, Carletti C, de Araújo LS, Santos R, Reis J. Respiratory gases, air pollution and epilepsy. Rev Neurol. 2019;175(10):604–13.

    Article  CAS  Google Scholar 

  50. Xu C, Fan Y-N, Kan H-D, Chen R-J, Liu J-H, Li Y-F, et al. The novel relationship between urban air pollution and epilepsy: a time series study. PLoS One. 2016;11(8):e0161992.

    Article  CAS  Google Scholar 

  51. Jayaraj RL, Rodriguez EA, Wang Y, Block ML. Outdoor ambient air pollution and neurodegenerative diseases: the neuroinflammation hypothesis. Curr Environ Health Rep. 2017;4(2):166–79.

    Article  CAS  Google Scholar 

  52. Ardura-Fabregat A, Boddeke E, Boza-Serrano A, Brioschi S, Castro-Gomez S, Ceyzeriat K, et al. Targeting neuroinflammation to treat Alzheimer’s disease. CNS Drugs. 2017;31(12):1057–82.

    Article  CAS  Google Scholar 

  53. DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016;139:136–53.

    Article  CAS  Google Scholar 

  54. Cakmak S, Dales RE, Vidal CB. Air pollution and hospitalization for epilepsy in Chile. Environ Int. 2010;36(6):501–5.

    Article  CAS  Google Scholar 

  55. Finkelstein MM, Jerrett M. A study of the relationships between Parkinson’s disease and markers of traffic-derived and environmental manganese air pollution in two Canadian cities. Environ Res. 2007;104(3):420–32.

    Article  CAS  Google Scholar 

  56. Ritz B, Lee P-C, Hansen J, Lassen CF, Ketzel M, Sørensen M, et al. Traffic-related air pollution and Parkinson’s disease in Denmark: a case–control study. Environ Health Perspect. 2016;124(3):351–6.

    Article  CAS  Google Scholar 

  57. Lee P-C, Liu L-L, Sun Y, Chen Y-A, Liu C-C, Li C-Y, et al. Traffic-related air pollution increased the risk of Parkinson’s disease in Taiwan: a nationwide study. Environ Int. 2016;96:75–81.

    Article  CAS  Google Scholar 

  58. Palacios N, Fitzgerald KC, Hart JE, Weisskopf MG, Schwarzschild MA, Ascherio A, et al. Particulate matter and risk of Parkinson disease in a large prospective study of women. Environ Health. 2014;13(1):80.

    Article  CAS  Google Scholar 

  59. Kirrane EF, Bowman C, Davis JA, Hoppin JA, Blair A, Chen H, et al. Associations of ozone and PM2.5 concentrations with Parkinson’s disease among participants in the agricultural health study. J Occup Environ Med. 2015;57(5)):509.

    Article  CAS  Google Scholar 

  60. Block ML, Elder A, Auten RL, Bilbo SD, Chen H, Chen J-C, et al. The outdoor air pollution and brain health workshop. Neurotoxicology. 2012;33(5):972–84.

    Article  Google Scholar 

  61. Calderón-Garcidueñas L, Franco-Lira M, Mora-Tiscareño A, Medina-Cortina H, Torres-Jardón R, Kavanaugh M. Early Alzheimer’s and Parkinson’s disease pathology in urban children: friend versus foe responses—it is time to face the evidence. Biomed Res Int. 2013;2013:161687.

    Article  CAS  Google Scholar 

  62. Veronesi B, Makwana O, Pooler M, Chen LC. Effects of subchronic exposures to concentrated ambient particles: VII. Degeneration of dopaminergic neurons in Apo E−/− mice. Inhal Toxicol. 2005;17(4–5):235–41.

    Article  CAS  Google Scholar 

  63. Levesque S, Surace MJ, McDonald J, Block ML. Air pollution & the brain: subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease. J Neuroinflammation. 2011;8(1):105.

    Article  CAS  Google Scholar 

  64. Guerra R, Vera-Aguilar E, Uribe-Ramirez M, Gookin G, Camacho J, Osornio-Vargas A, et al. Exposure to inhaled particulate matter activates early markers of oxidative stress, inflammation and unfolded protein response in rat striatum. Toxicol Lett. 2013;222(2):146–54.

    Article  CAS  Google Scholar 

  65. World Health Organization. Neurological disorders: public health challenges. Geneva: World Health Organization; 2006.

    Google Scholar 

  66. Kasten M, Chade A, Tanner CM. Epidemiology of Parkinson’s disease. Handb Clin Neurol. 2007;83:129–51.

    Article  Google Scholar 

  67. Forum WE. The best and worst countries for air pollution and electricity use. [cited 2020 September, 10]. https://www.weforum.org/agenda/2017/02/the-best-and-worst-countries-for-air-pollution-and-electricity-use.

  68. Evaluation IfHMa. Global burden of disease study 2017. 2018 [cited 2020 September 12]. http://ghdx.healthdata.org/gbd-results-tool.

  69. Forman HJ, Finch CE. A critical review of assays for hazardous components of air pollution. Free Radic Biol Med. 2018;117:202–17.

    Article  CAS  Google Scholar 

  70. Ajmani GS, Suh HH, Pinto JM. Effects of ambient air pollution exposure on olfaction: a review. Environ Health Perspect. 2016;124(11):1683–93.

    Article  CAS  Google Scholar 

  71. Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol. 2004;16(6–7):437–45.

    Article  CAS  Google Scholar 

  72. Oberdörster G, Utell MJ. Ultrafine particles in the urban air: to the respiratory tract—and beyond? Environ Health Perspect. 2002;110(8):A440–A1.

    Article  Google Scholar 

  73. Araneda S, Commin L, Atlagich M, Kitahama K, Parraguez VH, Pequignot J-M, et al. VEGF overexpression in the astroglial cells of rat brainstem following ozone exposure. Neurotoxicology. 2008;29(6):920–7.

    Article  CAS  Google Scholar 

  74. Guevara-Guzmán R, Arriaga V, Kendrick K, Bernal C, Vega X, Mercado-Gómez O, et al. Estradiol prevents ozone-induced increases in brain lipid peroxidation and impaired social recognition memory in female rats. Neuroscience. 2009;159(3):940–50.

    Article  CAS  Google Scholar 

  75. Pereyra-Muñoz N, Rugerio-Vargas C, Angoa-Pérez M, Borgonio-Pérez G, Rivas-Arancibia S. Oxidative damage in substantia nigra and striatum of rats chronically exposed to ozone. J Chem Neuroanat. 2006;31(2):114–23.

    Article  CAS  Google Scholar 

  76. Zhou N-B, Fu Z-J, Sun T. Effects of different concentrations of oxygen–ozone on rats’ astrocytes in vitro. Neurosci Lett. 2008;441(2):178–82.

    Article  CAS  Google Scholar 

  77. Rahman M, Wang J, Patterson T, Saini U, Robinson B, Newport G, et al. Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol Lett. 2009;187(1):15–21.

    Article  CAS  Google Scholar 

  78. Chen L, Yokel RA, Hennig B, Toborek M. Manufactured aluminum oxide nanoparticles decrease expression of tight junction proteins in brain vasculature. J Neuroimmune Pharmacol. 2008;3(4):286–95.

    Article  Google Scholar 

  79. Lovell MA, Markesbery WR. Oxidative damage in mild cognitive impairment and early Alzheimer’s disease. J Neurosci Res. 2007;85(14):3036–40.

    Article  CAS  Google Scholar 

  80. Zanchi AC, Venturini CD, Saiki M, Nascimento Saldiva PH, Tannhauser Barros HM, Rhoden CR. Chronic nasal instillation of residual-oil fly ash (ROFA) induces brain lipid peroxidation and behavioral changes in rats. Inhal Toxicol. 2008;20(9):795–800.

    Article  CAS  Google Scholar 

  81. Block M, Wu X, Pei Z, Li G, Wang T, Qin L, et al. Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase. FASEB J. 2004;18(13):1618–20.

    Article  CAS  Google Scholar 

  82. Sama P, Long TC, Hester S, Tajuba J, Parker J, Chen L-C, et al. The cellular and genomic response of an immortalized microglia cell line (BV2) to concentrated ambient particulate matter. Inhal Toxicol. 2007;19(13):1079–87.

    Article  CAS  Google Scholar 

  83. Hartz AM, Bauer B, Block ML, Hong J-S, Miller DS. Diesel exhaust particles induce oxidative stress, proinflammatory signaling, and P-glycoprotein up-regulation at the blood-brain barrier. FASEB J. 2008;22(8):2723–33.

    Article  CAS  Google Scholar 

  84. Mitsushima D, Yamamoto S, Fukushima A, Funabashi T, Kobayashi T, Fujimaki H. Changes in neurotransmitter levels and proinflammatory cytokine mRNA expressions in the mice olfactory bulb following nanoparticle exposure. Toxicol Appl Pharmacol. 2008;226(2):192–8.

    Article  CAS  Google Scholar 

  85. Sirivelu MP, MohanKumar SM, Wagner JG, Harkema JR, MohanKumar PS. Activation of the stress axis and neurochemical alterations in specific brain areas by concentrated ambient particle exposure with concomitant allergic airway disease. Environ Health Perspect. 2006;114(6):870–4.

    Article  CAS  Google Scholar 

  86. Calderón-Garcidueñas L, Reed W, Maronpot RR, Henriquez-Roldán C, Delgado-Chavez R, Calderon-Garciduenas A, et al. Brain inflammation and Alzheimer’s-like pathology in individuals exposed to severe air pollution. Toxicol Pathol. 2004;32(6):650–8.

    Article  Google Scholar 

  87. Calderón-Garcidueñas L, Solt AC, Henríquez-Roldán C, Torres-Jardón R, Nuse B, Herritt L, et al. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid β-42 and α-synuclein in children and young adults. Toxicol Pathol. 2008;36(2):289–310.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mallhi, T.H., Butt, M.H., Ahmad, A., Misbah, S., Atique, S., Khan, Y.H. (2021). Air Pollutants and Neurological Disorders: From Exposure to Preventive Interventions. In: Akash, M.S.H., Rehman, K. (eds) Environmental Contaminants and Neurological Disorders. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-66376-6_2

Download citation

Publish with us

Policies and ethics