Skip to main content

Nanomaterial-Based Gas Sensors for Agriculture Sector

  • Chapter
  • First Online:
Biosensors in Agriculture: Recent Trends and Future Perspectives

Abstract

Discovery of nanomaterials in the last three decades and their unique properties led the boom in their applications in various areas. Use of these materials in engineering, medical and environment also increased their attraction for the potential applications in agriculture. The current focus of agriculture research is the sustainable increase in crop production and protection. For achieving the goals, constant checking of parameters such as moisture content, soil fertility, temperature, crop nutrient capacity, pathogens, plant diseases, etc. are highly required. Use of nano sensors for monitoring these aspects are found to be very effective in increasing the healthy crop production. This chapter describes the applications of different nanomaterials in sensing of gases during different phases of agricultural practices. The objective is to evaluate the current literature using the gas sensors in agriculture and meat production, and their storage and transport applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber JD et al (2003) Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience 53:375–389

    Article  Google Scholar 

  • Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28:1–63

    Article  Google Scholar 

  • Ast C, Schmälzlin E, Löhmannsröben H-G, Van Dongen JT (2012) Optical oxygen micro-and nanosensors for plant applications. Sensors 12:7015–7032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandodkar AJ, Jeerapan I, Wang J (2016) Wearable chemical sensors: present challenges and future prospects. Acs Sensors 1:464–482

    Article  CAS  Google Scholar 

  • Baratto C et al (2005) Monitoring plants health in greenhouse for space missions. Sens Actuators B: Chem 108:278–284

    Article  CAS  Google Scholar 

  • Campbell FW, Compton RG (2010) The use of nanoparticles in electroanalysis: an updated review. Anal Bioanal Chem 396:241–259

    Article  CAS  PubMed  Google Scholar 

  • Casaburi A, Piombino P, Nychas G-J, Villani F, Ercolini D (2015) Bacterial populations and the volatilome associated to meat spoilage. Food Microbiol 45:83–102

    Article  CAS  PubMed  Google Scholar 

  • Chang K, Kim Y-H, Kim Y-J, Yoon YJ (2007) Functional antenna integrated with relative humidity sensor using synthesised polyimide for passive FID sensing. Electron lett 43:259–260

    Article  CAS  Google Scholar 

  • Chaudhary D, Nayse S, Waghmare L (2011) Application of wireless sensor networks for greenhouse parameter control in precision agriculture. Int J Wireless Inf Networks 3:140–149

    Google Scholar 

  • Chaudhry Q et al (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25:241–258

    Article  CAS  Google Scholar 

  • Choi S-W, Kim SS (2012) Room temperature CO sensing of selectively grown networked ZnO nanowires by Pd nanodot functionalization. Sens Actuators B: Chem 168:8–13

    Article  CAS  Google Scholar 

  • Clark HA et al (1998) Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs). Sens Actuators B: Chem 51:12–16

    Article  CAS  Google Scholar 

  • Coutinho CF et al (2007) Ammonium ion sensor based on SiO2/ZrO2/phosphate-NH4 + composite for quantification of ammonium ions in natural waters. J Braz Chem Soc 18:189–194

    Article  CAS  Google Scholar 

  • Dave D, Ghaly AE (2011) Meat spoilage mechanisms and preservation techniques: a critical review. Am J Agric Biol Sci 6:486–510

    Article  CAS  Google Scholar 

  • de Lacy Costello B, Ewen R, Ratcliffe NM, Richards M (2008) Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles. Sens Actuators B: Chem 134:945–952

    Article  CAS  Google Scholar 

  • Dikovska AO, Atanasova G, Nedyalkov N, Stefanov P, Atanasov P, Karakoleva E, Andreev AT (2010) Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber. Sens Actuators B: Chem 146:331–336

    Article  CAS  Google Scholar 

  • Dini F, Paolesse R, Filippini D, D’Amico A, Lundström I, Di Natale C (2010) Fish freshness decay measurement with a colorimetric artificial olfactory system. Procedia Eng 5:1228–1231

    Article  CAS  Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–440

    Article  CAS  Google Scholar 

  • El Barbri N, Llobet E, El Bari N, Correig X, Bouchikhi B (2008) Electronic nose based on metal oxide semiconductor sensors as an alternative technique for the spoilage classification of red meat. Sensors 8:142–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Epifani M, Arbiol J, Pellicer E, Comini E, Siciliano P, Faglia G, Morante JR (2008) Synthesis and gas-sensing properties of Pd-doped SnO2 nanocrystals: A case study of a general methodology for doping metal oxide nanocrystals. Cryst Growth Des 8:1774–1778

    Article  CAS  Google Scholar 

  • Eranna G, Joshi B, Runthala D, Gupta R (2004) Oxide materials for development of integrated gas sensors—a comprehensive review. Crit Rev Solid State Mater Sci 29:111–188

    Article  CAS  Google Scholar 

  • Esfandyarpour B, Mohajerzadeh S, Famini S, Khodadadi A, Soleimani EA (2004) High sensitivity Pt-doped SnO2 gas sensors fabricated using sol–gel solution on micromachined (1 0 0) Si substrates. Sens Actuators B: Chem 100:190–194

    Article  CAS  Google Scholar 

  • Farahani H, Wagiran R, Hamidon MN (2014) Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14:7881–7939

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Feng Q, Li X, Wang J (2017) Percolation effect of reduced graphene oxide (rGO) on ammonia sensing of rGO-SnO2 composite based sensor. Sensors and Actuators B: Chemical 243:1115–1126

    Article  CAS  Google Scholar 

  • Galloway JN et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  PubMed  Google Scholar 

  • García M, Aleixandre M, Gutiérrez J, Horrillo M (2006) Electronic nose for wine discrimination. Sens Actuators B: Chem 113:911–916

    Article  CAS  Google Scholar 

  • Gardner JW, Bartlett PN (1994) A brief history of electronic noses. Sens Actuators B: Chem 18:210–211

    Article  Google Scholar 

  • Guenther A (1997) Seasonal and spatial variations in natural volatile organic compound emissions. Ecol Appl 7:34–45

    Article  Google Scholar 

  • Guthrie S, Giles S, Dunkerley F, Tabaqchali H, Harshfield A, Ioppolo B, Manville C (2018) The impact of ammonia emissions from agriculture on biodiversity. The Royal Society, Santa Monica

    Book  Google Scholar 

  • Henderson WG, Khalilian A, Han YJ, Greene JK, Degenhardt DC (2010) Detecting stink bugs/damage in cotton utilizing a portable electronic nose. Comput Electron Agric 70:157–162

    Article  Google Scholar 

  • Herrmann U et al (2002) Monitoring apple flavor by use of quartz microbalances. Anal Bioanal Chem 372:611–614

    Article  CAS  PubMed  Google Scholar 

  • Holzinger M, Maier J, Sitte W (1997) Potentiometric detection of complex gases: application to CO2. Solid State Ionics 94:217–225

    Article  CAS  Google Scholar 

  • Hongsith N, Viriyaworasakul C, Mangkorntong P, Mangkorntong N, Choopun S (2008) Ethanol sensor based on ZnO and Au-doped ZnO nanowires. Ceram Int 34:823–826

    Article  CAS  Google Scholar 

  • Huang L, Zhao J, Chen Q, Zhang Y (2014) Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques. Food Chem 145:228–236

    Article  CAS  PubMed  Google Scholar 

  • Imam SA, Choudhary A, Sachan VK (2015) Design issues for wireless sensor networks and smart humidity sensors for precision agriculture: A review. In: 2015 International Conference on Soft Computing Techniques and Implementations (ICSCTI), 2015. IEEE, pp 181–187

    Google Scholar 

  • Imamura A, Yumoto T (2008) Dynamics of fruit-body production and mycorrhiza formation of ectomycorrhizal ammonia fungi in warm temperate forests in Japan. Mycoscience 49:42–55

    Article  Google Scholar 

  • Jaiswal M, Kumar R, Mittal J, Jha P (2020) Synthesis of CrO3 intercalated multilayer graphene for rapid and reversible NH3 gas sensing. Sens Actuators B: Chem 310:127826

    Article  CAS  Google Scholar 

  • Jian Y, Hu W, Zhao Z, Cheng P, Haick H, Yao M, Wu W (2020) Gas sensors based on chemi-resistive hybrid functional nanomaterials. Nano-Micro Lett 12:1–43

    Article  CAS  Google Scholar 

  • Jonda S, Fleischer M, Meixner H (1996) Temperature control of semiconductor metal-oxide gas sensors by means of fuzzy logic. Sens Actuators B: Chem 34:396–400

    Article  CAS  Google Scholar 

  • Joyner JJ, Kumar DV (2015) Nanosensors and their applications in food analysis: a review. Int J Sci Technol 3:80

    Google Scholar 

  • Kannan P, Guo L (2020) Nanosensors for food safety. Nanosensors for smart cities. Elsevier, Amsterdam, pp 339–354

    Chapter  Google Scholar 

  • Kaphle A, Navya P, Umapathi A, Daima HK (2018) Nanomaterials for agriculture, food and environment: applications, toxicity and regulation. Environ Chem Lett 16:43–58

    Article  CAS  Google Scholar 

  • Karunagaran B, Uthirakumar P, Chung S, Velumani S, Suh E-K (2007) TiO2 thin film gas sensor for monitoring ammonia. Mater Charact 58:680–684

    Article  CAS  Google Scholar 

  • Kaushal M, Wani SP (2017) Nanosensors: frontiers in precision agriculture. Nanotechnology. Springer, Berlin, pp 279–291

    Chapter  Google Scholar 

  • Kerry J, O’grady M, Hogan S (2006) Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review. Meat Sci 74:113–130

    Article  CAS  PubMed  Google Scholar 

  • King GM (2000) Land use impacts on atmospheric carbon monoxide consumption by soils. Global Biogeochem Cycles 14:1161–1172

    Article  CAS  Google Scholar 

  • Klimant I, Kühl M, Glud RN, Holst G (1997) Optical measurement of oxygen and temperature in microscale: strategies and biological applications. Sens Actuators B: Chem 38:29–37

    Article  CAS  Google Scholar 

  • Kocache R (1986) The measurement of oxygen on gas mixtures. J Phys E: Sci Instrum 19:401

    Article  CAS  Google Scholar 

  • Kohl D (2001) Function and applications of gas sensors. J Phys D Appl Phys 34:R125

    Article  CAS  Google Scholar 

  • Kolle C, Gruber W, Trettnak W, Biebernik K, Dolezal C, Reininger F, O’Leary P (1997) Fast optochemical sensor for continuous monitoring of oxygen in breath-gas analysis. Sens Actuators B: Chem 38:141–149

    Article  CAS  Google Scholar 

  • Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625

    Article  CAS  PubMed  Google Scholar 

  • Koudelka M (1986) Performance characteristics of a planar ‘Clark-type’oxygen sensor. Sens Actuators 9:249–258

    Article  CAS  Google Scholar 

  • Kumar R, Jaiswal M, Singh O, Gupta A, Ansari MS, Mittal J (2019) Selective and reversible sensing of low concentration of carbon monoxide gas using Nb-doped OMS-2 nanofibers at room temperature. IEEE Sensors Journal 19:7201–7206

    Article  CAS  Google Scholar 

  • Kumar R, Kushwaha N, Mittal J (2016) Ammonia gas sensing activity of Sn nanoparticles film. Sens Lett 14:300–303

    Article  Google Scholar 

  • Kumar R, Kushwaha N, Mittal J (2017a) Superior, rapid and reversible sensing activity of graphene-SnO hybrid film for low concentration of ammonia at room temperature Sens Actuators B: Chem 244:243–251

    Google Scholar 

  • Kumar R, Kushwaha N, Pandey S, Priya R, Mittal J (2017b) Superior NH3 sensor using Ni doped K-OMS-2 nanofibers. IEEE Sens J 18:956–961

    Google Scholar 

  • Kumar R, Mittal J, Kushwaha N, Rao BV, Pandey S, Liu C-P (2018) Room temperature carbon monoxide gas sensor using Cu doped OMS-2 nanofibers. Sens Actuators B: Chem 266:751–760

    Article  CAS  Google Scholar 

  • Lähdesmäki I, Lewenstam A, Ivaska A (1996) A polypyrrole-based amperometric ammonia sensor. Talanta 43:125–134

    Article  Google Scholar 

  • Lai H-Y, Chen C-H (2012) Highly sensitive room-temperature CO gas sensors: Pt and Pd nanoparticle-decorated In2O3 flower-like nanobundles. J Mater Chem 22:13204–13208

    Article  CAS  Google Scholar 

  • Lange D, Hagleitner C, Hierlemann A, Brand O, Baltes H (2002) Complementary metal oxide semiconductor cantilever arrays on a single chip: mass-sensitive detection of volatile organic compounds. Anal Chem 74:3084–3095

    Article  CAS  PubMed  Google Scholar 

  • Laothawornkitkul J, Moore JP, Taylor JE, Possell M, Gibson TD, Hewitt CN, Paul ND (2008) Discrimination of plant volatile signatures by an electronic nose: a potential technology for plant pest and disease monitoring. Environ Sci Technol 42:8433–8439

    Article  CAS  PubMed  Google Scholar 

  • Lee J-H, Park B-O (2004) Characteristics of Al-doped ZnO thin films obtained by ultrasonic spray pyrolysis: effects of Al doping and an annealing treatment. Mater Sci Eng, B 106:242–245

    Article  CAS  Google Scholar 

  • Lee W, Searcy S (2000) Multispectral sensor for detecting nitrogen in corn plants. In: ASAE Annual International Meeting, Midwest Express Center, Milwaukee, Wisconsin. pp 9–12

    Google Scholar 

  • Lei S, Hoa SV, Ton-That M-T (2006) Effect of clay types on the processing and properties of polypropylene nanocomposites. Compos Sci Technol 66:1274–1279

    Article  CAS  Google Scholar 

  • Li G, Wang X, Yan L, Wang Y, Zhang Z, Xu J (2019) PdPt bimetal-functionalized SnO2 nanosheets: controllable synthesis and its dual selectivity for detection of carbon monoxide and methane. ACS Appl Mater Interfaces 11:26116–26126

    Article  CAS  PubMed  Google Scholar 

  • Li S, Simonian A, Chin BA (2010) Sensors for agriculture and the food industry. Electrochem Soc Interface 19:41–46

    Article  CAS  Google Scholar 

  • Licausi F, Giorgi FM, Schmälzlin E, Usadel B, Perata P, van Dongen JT, Geigenberger P (2011) HRE-type genes are regulated by growth-related changes in internal oxygen concentrations during the normal development of potato (Solanum tuberosum) tubers. Plant Cell Physiol 52:1957–1972

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Zhang X, Yuan L, Yu J (2015) A review of high-temperature electrochemical sensors based on stabilized zirconia. Solid State Ionics 283:91–102

    Article  CAS  Google Scholar 

  • Luechinger NA, Loher S, Athanassiou EK, Grass RN, Stark WJ (2007) Highly sensitive optical detection of humidity on polymer/metal nanoparticle hybrid films. Langmuir 23:3473–3477

    Article  CAS  PubMed  Google Scholar 

  • Lv Y-y, Wu S-w, Li J (2014) Porphyrinic polymers for gas sensing: An overview. Curr Org Chem 18:475–488

    Article  CAS  Google Scholar 

  • Mabeck JT, Malliaras GG (2006) Chemical and biological sensors based on organic thin-film transistors. Anal Bioanal Chem 384:343–353

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Kim S, Puligundla P, Ko S (2014) Carbon dioxide and oxygen gas sensors-possible application for monitoring quality, freshness, and safety of agricultural and food products with emphasis on importance of analytical signals and their transformation. J Korean Soc Appl Biol Chem 57:723–733

    Article  CAS  Google Scholar 

  • Meng Z, Stolz RM, Mendecki L, Mirica KA (2019) Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem Rev 119:478–598

    Article  CAS  PubMed  Google Scholar 

  • Menil F, Coillard V, Lucat C (2000) Critical review of nitrogen monoxide sensors for exhaust gases of lean burn engines. Sens Actuators B: Chem 67:1–23

    Article  CAS  Google Scholar 

  • Mittal J, Lin KL (2020) Sn/SnO hybrid graphene for thermal interface material and interconnections with Sn hybrid carbon nanotubes. Mater Sci Eng, B 253:114485

    Article  CAS  Google Scholar 

  • Miura K, Ashikari M, Matsuoka M (2011) The role of QTLs in the breeding of high-yielding rice. Trends Plant Sci 16:319–326

    Article  CAS  PubMed  Google Scholar 

  • Mohebi E, Marquez L (2015) Intelligent packaging in meat industry: an overview of existing solutions. J Food Sci Technol 52:3947–3964

    Article  CAS  PubMed  Google Scholar 

  • Moon CS, Kim H-R, Auchterlonie G, Drennan J, Lee J-H (2008) Highly sensitive and fast responding CO sensor using SnO2 nanosheets. Sens Actuators B: Chem 131:556–564

    Article  CAS  Google Scholar 

  • Moon WJ, Yu JH, Choi GM (2004) Selective gas detection of SnO 2-TiO 2 gas sensors. J Electroceram 13:707–713

    Article  CAS  Google Scholar 

  • Mousavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1:414–419

    Google Scholar 

  • Neethirajan S, Jayas D, Sadistap S (2009) Carbon dioxide (CO2) sensors for the agri-food industry—a review. Food Bioprocess Technol 2:115–121

    Article  CAS  Google Scholar 

  • Nehra M, Dilbaghi N, Hassan AA, Kumar S (2019) Carbon-based nanomaterials for the development of sensitive nanosensor platforms. Advances in nanosensors for biological and environmental analysis. Elsevier, Amsterdam, pp 1–25

    Google Scholar 

  • Nei L, Compton RG (1996) An improved Clark-type galvanic sensor for dissolved oxygen. Sens Actuators B: Chem 30:83–87

    Article  CAS  Google Scholar 

  • Nunes P, Malik A, Fernandes B, Fortunato E, Vilarinho P, Martins R (1999) Influence of the doping and annealing atmosphere on zinc oxide thin films deposited by spray pyrolysis. Vacuum 52:45–49

    Article  CAS  Google Scholar 

  • Nychas G-JE, Skandamis PN, Tassou CC, Koutsoumanis KP (2008) Meat spoilage during distribution. Meat Sci 78:77–89

    Article  PubMed  Google Scholar 

  • O’Farrell M, Sheridan C, Lewis E, Flanagan C, Kerry J, Jackman N (2007) Online optical fiber sensor for detecting premature browning in ground beef using pattern recognition techniques and reflection spectroscopy. IEEE Sens J 7:1685–1692

    Article  Google Scholar 

  • Okcan B, Akin T (2007) A low-power robust humidity sensor in a standard CMOS process. IEEE Trans Electron Devices 54:3071–3078

    Article  CAS  Google Scholar 

  • Papadopoulou OS, Panagou EZ, Mohareb FR, Nychas G-JE (2013) Sensory and microbiological quality assessment of beef fillets using a portable electronic nose in tandem with support vector machine analysis. Food Res Int 50:241–249

    Article  Google Scholar 

  • Patel G, Pillai V, Bhatt P, Mohammad S (2020) Application of nanosensors in the food industry. Nanosensors for Smart Cities. Elsevier, Amstersdam, pp 355–368

    Chapter  Google Scholar 

  • Patil DR, Patil LA (2007) Ammonia sensing resistors based on Fe2O3 modified ZnO thick films. IEEE Sens J 7:434–439

    Article  CAS  Google Scholar 

  • Pelegrí-Sebastiá J, García-Breijo E, Ibanez J, Sogorb T, Laguarda-Miro N, Garrigues J (2011) Low-cost capacitive humidity sensor for application within flexible RFID labels based on microcontroller systems. IEEE Trans Instrum Meas 61:545–553

    Article  Google Scholar 

  • Penza M et al (2007) Enhancement of sensitivity in gas chemiresistors based on carbon nanotube surface functionalized with noble metal (Au, Pt) nanoclusters. Appl Phys Lett 90:173123

    Article  CAS  Google Scholar 

  • Pinheiro C, Rodrigues CM, Schäfer T, Crespo JG (2002) Monitoring the aroma production during wine–must fermentation with an electronic nose. Biotechnol Bioeng 77:632–640

    Article  CAS  PubMed  Google Scholar 

  • Pourfayaz F, Khodadadi A, Mortazavi Y, Mohajerzadeh S (2005) CeO2 doped SnO2 sensor selective to ethanol in presence of CO, LPG and CH4. Sens Actuators B: Chem 108:172–176

    Article  CAS  Google Scholar 

  • Pudake RN, Chauhan N, Kole C (2019) Nanoscience for sustainable agriculture. Springer International Publishing. https://doi.org/10.1007/978-3-319-97852-9

  • Qi P et al (2003) Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett 3:347–351

    Article  CAS  Google Scholar 

  • Qian L, Wang K, Li Y, Fang H, Lu Q, Ma X (2006) CO sensor based on Au-decorated SnO2 nanobelt. Mater Chem Phys 100:82–84

    Article  CAS  Google Scholar 

  • Raimundo IM Jr, Narayanaswamy R (2001) Simultaneous determination of relative humidity and ammonia in air employing an optical fibre sensor and artificial neural network. Sens Actuators B: Chem 74:60–68

    Article  CAS  Google Scholar 

  • Reay DS, Davidson EA, Smith KA, Smith P, Melillo JM, Dentener F, Crutzen PJ (2012) Global agriculture and nitrous oxide emissions. Nat Clim Change 2:410–416

    Article  CAS  Google Scholar 

  • Renganathan B, Gobi G, Sastikumar D, Srinivasan R, Bose AC (2010) Optical fiber coated with nanocrystalline tin oxide for ammonia vapour sensing. Sens Lett 8:292–296

    Article  CAS  Google Scholar 

  • Renganathan B, Sastikumar D, Gobi G, Yogamalar NR, Bose AC (2011) Nanocrystalline ZnO coated fiber optic sensor for ammonia gas detection. Opt Laser Technol 43:1398–1404

    Article  CAS  Google Scholar 

  • Ruiz-Garcia L, Lunadei L, Barreiro P, Robla I (2009) A review of wireless sensor technologies and applications in agriculture and food industry: state of the art and current trends. Sensors 9:4728–4750

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz AM, Cornet A, Morante JR (2005) Performances of La–TiO2 nanoparticles as gas sensing material. Sens Actuators B: Chem 111:7–12

    Google Scholar 

  • Saini RK, Bagri LP, Bajpai AK (2017) Smart nanosensors for pesticide detection. New pesticides and soil sensors. Elsevier, Amsterdam, pp 519–559

    Chapter  Google Scholar 

  • Salinas Y et al (2014) A novel colorimetric sensor array for monitoring fresh pork sausages spoilage. Food Control 35:166–176

    Article  Google Scholar 

  • Sanchez PA, Swaminathan MS (2005) Hunger in Africa: the link between unhealthy people and unhealthy soils. The Lancet 365:442–444

    Article  Google Scholar 

  • Schutting S, Borisov SM, Klimant I (2013) Diketo-pyrrolo-pyrrole dyes as new colorimetric and fluorescent pH indicators for optical carbon dioxide sensors. Anal Chem 85:3271–3279

    Article  CAS  PubMed  Google Scholar 

  • Seal S, Shukla S (2002) Nanocrystalline SnO gas sensors in view of surface reactions and modifications. Jom 54:35–38

    Article  CAS  Google Scholar 

  • Shi H, Zhang M, Adhikari B (2018) Advances of electronic nose and its application in fresh foods: a review. Crit Rev Food Sci Nutr 58:2700–2710

    Article  CAS  PubMed  Google Scholar 

  • Smolander M (2003) The use of freshness indicators in packaging. In: Techniques Novel food packaging (ed) Ahvenainen, R. Woodhead Publishing, Cambridge, pp 127–143

    Google Scholar 

  • Sohraby K, Minoli D, Znati T (2007) Wireless sensor networks: technology, protocols, and applications. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  • Srbinovska M, Gavrovski C, Dimcev V, Krkoleva A, Borozan V (2015) Environmental parameters monitoring in precision agriculture using wireless sensor networks. J Cleaner Prod 88:297–307

    Article  Google Scholar 

  • Srivastava A, Jain K (2007) Study on ZnO-doped tin oxide thick film gas sensors. Mater Chem Phys 105:385–390

    Article  CAS  Google Scholar 

  • Sun H, Fung Y (2006) Piezoelectric quartz crystal sensor for rapid analysis of pirimicarb residues using molecularly imprinted polymers as recognition elements. Anal Chim Acta 576:67–76

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi T, Igarashi I (1988) Limiting current type oxygen sensor. Chem Sens Technol 1:79–95

    Article  CAS  Google Scholar 

  • Tang H, Yan M, Zhang H, Li S, Ma X, Wang M, Yang D (2006) A selective NH3 gas sensor based on Fe2O3–ZnO nanocomposites at room temperature. Sens Actuators B: Chem 114:910–915

    Article  CAS  Google Scholar 

  • Timmer B, Olthuis W, Van Den Berg A (2005) Ammonia sensors and their applications—a review. Sens Actuators B: Chem 107:666–677

    Article  CAS  Google Scholar 

  • Uetake H, Hirota N, Nakagawa J, Ikezoe Y, Kitazawa K (2000) Thermal convection control by gradient magnetic field. J Appl Phys 87:6310–6312

    Article  CAS  Google Scholar 

  • Vaezi M, Sadrnezhaad S (2007) Gas sensing behavior of nanostructured sensors based on tin oxide synthesized with different methods. Mater Sci Eng, B 140:73–80

    Article  CAS  Google Scholar 

  • van Dongen JT, Schurr U, Pfister M, Geigenberger P (2003) Phloem metabolism and function have to cope with low internal oxygen. Plant Physiol 131:1529–1543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Hieu N, Thuy LTB, Chien ND (2008) Highly sensitive thin film NH3 gas sensor operating at room temperature based on SnO2/MWCNTs composite. Sens Actuators B: Chem 129:888–895

    Article  CAS  Google Scholar 

  • von Bültzingslöwen C, McEvoy AK, McDonagh C, MacCraith BD, Klimant I, Krause C, Wolfbeis OS (2002) Sol–gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology. Analyst 127:1478–1483

    Article  Google Scholar 

  • Wagh M, Jain G, Patil D, Patil S, Patil L (2006) Modified zinc oxide thick film resistors as NH3 gas sensor. Sens Actuators B: Chem 115:128–133

    Article  CAS  Google Scholar 

  • Wan C, Qiao X, Zhang Y, Zhang Y (2003) Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites. Polym Testing 22:453–461

    Article  CAS  Google Scholar 

  • Wanekaya AK, Chen W, Myung NV, Mulchandani A (2006) Nanowire-based electrochemical biosensors. Electroanal Int J Devoted to Fundamental and Practical Aspects of Electroanalysis 18:533–550

    CAS  Google Scholar 

  • Wang R, Li J (2010) Effects of precursor and sulfation on OMS-2 catalyst for oxidation of ethanol and acetaldehyde at low temperatures. Environ Sci Technol 44:4282–4287

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-D, Wu X-H, Su Q, Li Y-F, Zhou Z-L (2001) Ammonia-sensing characteristics of Pt and SiO2 doped SnO2 materials. Solid-State Electron 45:347–350

    Article  CAS  Google Scholar 

  • Wang Y et al (2014) Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes. Nanoscale Res Lett 9:251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Warneck P (1999) Chemistry of the natural atmosphere. Elsevier, Amsterdam

    Google Scholar 

  • Weitz AM, Linder E, Frolking S, Crill P, Keller M (2001) N2O emissions from humid tropical agricultural soils: effects of soil moisture, texture and nitrogen availability. Soil Biol Biochem 33:1077–1093

    Article  CAS  Google Scholar 

  • Wijaya DR, Sarno R, Zulaika E, Sabila SI (2017) Development of mobile electronic nose for beef quality monitoring. Procedia Comput Sci 124:728–735

    Article  Google Scholar 

  • Williams E, Hutchinson G, Fehsenfeld F (1992) NOx and N2O emissions from soil. Global Biogeochem Cycles 6:351–388

    Article  CAS  Google Scholar 

  • Wilson AD, Oberle CS, Oberle DF (2013) Detection of off-flavor in catfish using a conducting polymer electronic-nose technology. Sensors 13:15968–15984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wojnowski W, Majchrzak T, Dymerski T, GÄ™bicki J, NamieÅ›nik J (2017) Electronic noses: powerful tools in meat quality assessment. Meat Sci 131:119–131

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y et al (2014) Determination of the freshness of beef strip loins (M. longissimus lumborum) using electronic nose. Food Anal Methods 7:1612–1618

    Article  Google Scholar 

  • Yamazoe N, Miura N (1995) Development of gas sensors for environmental protection. IEEE Trans Compon Packag Manuf Technol. Part A 18:252–256

    Article  CAS  Google Scholar 

  • Zaragozá P et al (2012) Fish freshness decay measurement with a colorimetric array. Procedia Eng 47:1362–1365

    Article  CAS  Google Scholar 

  • Zhang T, Nix MB, Yoo BY, Deshusses MA, Myung NV (2006) Electrochemically functionalized single-walled carbon nanotube gas sensor. Electroanalysis: An Int J Devoted to Fundam Pract Aspects of Electroanalysis 18:1153–1158

    Article  CAS  Google Scholar 

  • Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y (2015) Managing nitrogen for sustainable development. Nature 528:51–59

    Article  CAS  PubMed  Google Scholar 

  • Ziegler C (2004) Cantilever-based biosensors. Anal Bioanal Chem 379:946–959

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, R., Jaiswal, M., Kushwaha, N., Bansal, S., Mazumder, N., Mittal, J. (2021). Nanomaterial-Based Gas Sensors for Agriculture Sector. In: Pudake, R.N., Jain, U., Kole, C. (eds) Biosensors in Agriculture: Recent Trends and Future Perspectives. Concepts and Strategies in Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-66165-6_4

Download citation

Publish with us

Policies and ethics