Skip to main content

Wideband Tunable Delay Line for Microwave Signals Based on RF Photonic Components

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2020, ruSMART 2020)

Abstract

The principle of operation of the wideband tunable delay line for microwave signals is presented. Delay is performed after the transfer of the microwave signal to the optical frequency domain. The configuration of the delay line model is described. Bandwidth, losses, and distortion characteristics of the delay line model are experimentally determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skolnik, M.I.: Radar Handbook, 3rd edn. The McGraw-Hill Companies, New York (2008)

    Google Scholar 

  2. Tsui, J.B.: Microwave Receivers with Electronic Warfare Applications. SciTech Publishing Inc., Raleigh (2005)

    Book  Google Scholar 

  3. Poisel, R.A.: Electronic Warfare Receivers and Receiver Systems, 3rd edn. Artech House, New York (2014)

    Google Scholar 

  4. Wang, L., Guo, Y.X., Lian, Y., Heng, C.-H.: 3-to-5 GHz 4-channel UWB beamforming transmitter with 1° phase resolution through calibrated vernier delay line in 0.13 μm CMOS. IEEE J. Solid-State Circuits 47(12), 3145–3159 (2012). https://doi.org/10.1109/jssc.2012.2216704

    Article  Google Scholar 

  5. Abielmona, S., Gupta, S., Caloz, C.: Compressive receiver using a CRLH-based dispersive delay line for analog signal processing. IEEE Trans. Microw. Theor. Tech. 57(11), 2617–2626 (2009). https://doi.org/10.1109/TMTT.2009.2031927

    Article  Google Scholar 

  6. Toughlian, E.N., Zmuda, H.: A photonic variable RF delay line for phased array antennas. J. Lightwave Technol. 8(12), 1824–1828 (1990). https://doi.org/10.1109/50.62877

    Article  Google Scholar 

  7. Ortega, B., Cruz, J.L., Capmany, J., Andres, M.V., Pastor, D.: Variable delay line for phased-array antenna based on a chirped fiber grating. IEEE Trans. Microw. Theor. Tech. 48(8), 1352–1360 (2000). https://doi.org/10.1109/22.859480

    Article  Google Scholar 

  8. Ryazantsev, L.B., Likhachev, V.P.: Assessment of range and radial velocity of objects of a broadband radar station under conditions of range cell migration. Meas. Tech. 60(11), 1158–1162 (2018). https://doi.org/10.1007/s11018-018-1334-4

    Article  Google Scholar 

  9. Liu, Y., Yao, J., Yang, J.: Wideband true-time-delay unit for phased array beamforming using discrete-chirped fiber grating prism. Optics Commun. 207(1–6), 177–187 (2002). https://doi.org/10.1016/S0030-4018(02)01529-8

    Article  Google Scholar 

  10. Ivanov, S.I., Lavrov, A.P., Saenko, I.I., Filatov, D.L.: Chirped fiber grating beamformer for linear phased array antenna. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118, pp. 594–604. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_53

    Chapter  Google Scholar 

  11. Reindl, L., Ruppel, C.C.W., Berek, S., et al.: Design, fabrication, and application of precise SAW delay lines used in an FMCW radar system. IEEE Trans. Microw. Theor. Tech. 49(4), 787–794 (2001). https://doi.org/10.1109/22.915465

    Article  Google Scholar 

  12. Shahoei, H., Yao, J.: Wiley encyclopedia of electrical and electronics engineering. In: Webster, J. (ed.) Delay Lines. John Wiley & Sons, Inc., Hoboken (2014)

    Chapter  Google Scholar 

  13. Patent RU2620763C1 (2016)

    Google Scholar 

  14. Patent WO2013178847 (2013)

    Google Scholar 

  15. Egorova, O.N., Belkin, M.E., Klushnik, D.A., Zhuravlev, S.G., Astapovich, M.S., Semojnov, S.L.: Microwave signal delay line based on multicore optical fiber. Phys. Wave Phenom. 25(4), 289–292 (2017). https://doi.org/10.3103/S1541308X17040082

    Article  Google Scholar 

  16. Egorova, O.N., Astapovich, M.S., Belkin, M.E., Semenov, S.L.: Fiber-optic delay line using multicore fiber. Bull. Lebedev. Phys. Inst. 44(1), 5–7 (2017). https://doi.org/10.3103/S106833561701002X

    Article  Google Scholar 

  17. https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=1553

  18. https://agiltron.com/category/fiber-optic-switches/nanospeed-fiber-optical-switches/

  19. NanoSpeed 1 × 2 series fiber optical switch datasheet. https://agiltron.com/PDFs/NS_1x2_switch_All.pdf

  20. PM series fiber optic switch datasheet, https://agiltron.com/PDFs/CL%201x2%20PM%20Series%20Switch.pdf

  21. Switch HMC347ALP3E datasheet, https://www.analog.com/en/products/hmc347alp3e.html

  22. Ivanov, S.I., Lavrov, A.P., Saenko, I.I.: Main characteristics study of analog fiber-optic links with direct and external modulation in transmitter modules. In: Proceedings IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), pp. 264–267 (2018). https://doi.org/10.1109/eexpolytech.2018.8564391

Download references

Acknowledgments

A. P. Lavrov and M. V. Parfenov have used funding provided by RFBR to participate in the research of this microwave delay line possibilities (project number 20-07-00928).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey S. Podstrigaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Podstrigaev, A.S., Lukiyanov, A.S., Galichina, A.A., Lavrov, A.P., Parfenov, M.V. (2020). Wideband Tunable Delay Line for Microwave Signals Based on RF Photonic Components. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2020 2020. Lecture Notes in Computer Science(), vol 12525. Springer, Cham. https://doi.org/10.1007/978-3-030-65726-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65726-0_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65725-3

  • Online ISBN: 978-3-030-65726-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics