Skip to main content

Fundamentals of Radiomics in Nuclear Medicine and Hybrid Imaging

  • Chapter
  • First Online:
Basic Sciences of Nuclear Medicine

Abstract

Positron emission tomography (PET) and single-photon emission computerized tomography (SPECT) are nuclear diagnostic imaging modalities for different diseases including cardiac failures and cancer. They hold the advantage of detecting disease-related biochemical and physiologic abnormalities in advance of anatomical changes, thus widely used for staging of disease progression, identification of the treatment gross tumor volume, monitoring of disease, as well as prediction of outcomes and personalization of treatment regimens. Among the arsenal of different functional imaging modalities, nuclear imaging has benefited from early adoption of quantitative image analysis starting from simple standard uptake value (SUV) normalization to more advanced extraction of complex imaging uptake patterns; thanks chiefly to application of sophisticated image processing and machine learning algorithms. In this chapter, we discuss the application of image processing and machine/deep learning techniques to PET/SPECT imaging with special focus on the oncological radiotherapy domain as a case study. We will start from basic feature extraction to application in image-based outcome modeling in the radiomics and the deep learning fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verhagen AF, Bootsma GP, Tjan-Heijnen VC, van der Wilt GJ, Cox AL, Brouwer MH, et al. FDG-PET in staging lung cancer: how does it change the algorithm? Lung Cancer. 2004;44:175–81. https://doi.org/10.1016/j.lungcan.2003.11.007.

    Article  CAS  PubMed  Google Scholar 

  2. Bradley J, Thorstad WL, Mutic S, Miller TR, Dehdashti F, Siegel BA, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2004;59:78–86.

    Article  PubMed  Google Scholar 

  3. Bradley JD, Perez CA, Dehdashti F, Siegel BA. Implementing biologic target volumes in radiation treatment planning for non-small cell lung cancer. J Nucl Med. 2004;45(Suppl 1):96S–101S.

    PubMed  Google Scholar 

  4. Bradley J. Applications for FDG-PET in lung cancer; staging, targeting, and follow-up. Chicago, IL: The Radiological Society of North America; 2004.

    Google Scholar 

  5. Erdi YE, Macapinlac H, Rosenzweig KE, Humm JL, Larson SM, Erdi AK, et al. Use of PET to monitor the response of lung cancer to radiation treatment. Eur J Nucl Med. 2000;27:861–6.

    Article  CAS  PubMed  Google Scholar 

  6. Mac Manus MP, Hicks RJ. PET scanning in lung cancer: current status and future directions. Semin Surg Oncol. 2003;21:149–55.

    Article  PubMed  Google Scholar 

  7. Mac Manus MP, Hicks RJ, Matthews JP, McKenzie A, Rischin D, Salminen EK, et al. Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer. J Clin Oncol. 2003;21:1285–92.

    Article  PubMed  Google Scholar 

  8. MacManus MR, Hicks R, Fisher R, Rischin D, Michael M, Wirth A, et al. FDG-PET-detected extracranial metastasis in patients with non-small cell lung cancer undergoing staging for surgery or radical radiotherapy—survival correlates with metastatic disease burden. Acta Oncol. 2003;42:48–54.

    Article  PubMed  Google Scholar 

  9. Pandit N, Gonen M, Krug L, Larson SM. Prognostic value of [18F]FDG-PET imaging in small cell lung cancer. Eur J Nucl Med Mol Imaging. 2003;30:78–84.

    Article  PubMed  Google Scholar 

  10. Toloza EM, Harpole L, McCrory DC. Noninvasive staging of non-small cell lung cancer: a review of the current evidence. Chest. 2003;123:137S–46S.

    Article  PubMed  Google Scholar 

  11. Schwartz DL, Ford E, Rajendran J, Yueh B, Coltrera MD, Virgin J, et al. FDG-PET/CT imaging for preradiotherapy staging of head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2005;61:129–36.

    Article  PubMed  Google Scholar 

  12. Suarez Fernandez JP, Maldonado Suarez A, Dominguez Grande ML, Santos Ortega M, Rodriguez Villalba S, Garcia Camanaque L, et al. Positron emission tomography (PET) imaging in head and neck cancer. Acta Otorrinolaringol Esp. 2004;55:303–9.

    Article  CAS  PubMed  Google Scholar 

  13. Oyama N, Miller TR, Dehdashti F, Siegel BA, Fischer KC, Michalski JM, et al. 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med. 2003;44:549–55.

    CAS  PubMed  Google Scholar 

  14. Mutic S, Malyapa RS, Grigsby PW, Dehdashti F, Miller TR, Zoberi I, et al. PET-guided IMRT for cervical carcinoma with positive para-aortic lymph nodes-a dose-escalation treatment planning study. Int J Radiat Oncol Biol Phys. 2003;55:28–35.

    Article  PubMed  Google Scholar 

  15. Miller TR, Grigsby PW. Measurement of tumor volume by PET to evaluate prognosis in patients with advanced cervical cancer treated by radiation therapy. Int J Radiat Oncol Biol Phys. 2002;53:353–9.

    Article  PubMed  Google Scholar 

  16. Ciernik IF. Radiotherapy of rectal cancer. Schweiz Rundsch Med Prax. 2004;93:1441–6.

    CAS  Google Scholar 

  17. Castellucci P, Zinzani P, Nanni C, Farsad M, Moretti A, Alinari L, et al. 18F-FDG PET early after radiotherapy in lymphoma patients. Cancer Biother Radiopharm. 2004;19:606–12.

    PubMed  Google Scholar 

  18. Spaepen K, Stroobants S, Verhoef G, Mortelmans L. Positron emission tomography with [(18)F]FDG for therapy response monitoring in lymphoma patients. Eur J Nucl Med Mol Imaging. 2003;30(Suppl 1):S97–105.

    Article  PubMed  Google Scholar 

  19. Fogarty GB, Tartaglia CJ, Peters LJ. Primary melanoma of the oesophagus well palliated by radiotherapy. Br J Radiol. 2004;77:1050–2.

    Article  CAS  PubMed  Google Scholar 

  20. Biersack HJ, Bender H, Palmedo H. FDG-PET in monitoring therapy of breast cancer. Eur J Nucl Med Mol Imaging. 2004;31(Suppl 1):S112–7.

    Article  PubMed  Google Scholar 

  21. Lind P, Igerc I, Beyer T, Reinprecht P, Hausegger K. Advantages and limitations of FDG PET in the follow-up of breast cancer. Eur J Nucl Med Mol Imaging. 2004;31(Suppl 1):S125–34.

    PubMed  Google Scholar 

  22. Zangheri B, Messa C, Picchio M, Gianolli L, Landoni C, Fazio F. PET/CT and breast cancer. Eur J Nucl Med Mol Imaging. 2004;31(Suppl 1):S135–42.

    Article  PubMed  Google Scholar 

  23. Brun E, Kjellen E, Tennvall J, Ohlsson T, Sandell A, Perfekt R, et al. FDG PET studies during treatment: prediction of therapy outcome in head and neck squamous cell carcinoma. Head Neck. 2002;24:127–35.

    Article  PubMed  Google Scholar 

  24. Hope AJ, Saha P, Grigsby PW. FDG-PET in carcinoma of the uterine cervix with endometrial extension. Cancer. 2006;106:196–200.

    Article  PubMed  Google Scholar 

  25. Kalff V, Duong C, Drummond EG, Matthews JP, Hicks RJ. Findings on 18F-FDG PET scans after neoadjuvant chemoradiation provides prognostic stratification in patients with locally advanced rectal carcinoma subsequently treated by radical surgery. J Nucl Med. 2006;47:14–22.

    PubMed  Google Scholar 

  26. Hicks RJ, Mac Manus MP, Matthews JP, Hogg A, Binns D, Rischin D, et al. Early FDG-PET imaging after radical radiotherapy for non-small-cell lung cancer: inflammatory changes in normal tissues correlate with tumor response and do not confound therapeutic response evaluation. Int J Radiat Oncol Biol Phys. 2004;60:412–8.

    Article  PubMed  Google Scholar 

  27. Grigsby PW, Siegel BA, Dehdashti F, Rader J, Zoberi I. Posttherapy [18F] fluorodeoxyglucose positron emission tomography in carcinoma of the cervix: response and outcome. J Clin Oncol. 2004;22:2167–71.

    Article  PubMed  Google Scholar 

  28. Zaidi H, Alavi A, El Naqa I. Novel quantitative PET techniques for clinical decision support in oncology. Semin Nucl Med. 2018;48:548–64. https://doi.org/10.1053/j.semnuclmed.2018.07.003.

    Article  PubMed  Google Scholar 

  29. Shields AF. Positron emission tomography measurement of tumor metabolism and growth: its expanding role in oncology. Mol Imaging Biol. 2006;8:141–50.

    Article  PubMed  Google Scholar 

  30. Denecke T, Rau B, Hoffmann KT, Hildebrandt B, Ruf J, Gutberlet M, et al. Comparison of CT, MRI and FDG-PET in response prediction of patients with locally advanced rectal cancer after multimodal preoperative therapy: is there a benefit in using functional imaging? Eur Radiol. 2005;15:1658–66.

    Article  CAS  PubMed  Google Scholar 

  31. Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M, et al. The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2015;42:197–209. https://doi.org/10.1007/s00259-014-2949-6.

    Article  CAS  PubMed  Google Scholar 

  32. Eiber M, Maurer T, Souvatzoglou M, Beer AJ, Ruffani A, Haller B, et al. Evaluation of hybrid 68Ga-PSMA-ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med. 2015. https://doi.org/10.2967/jnumed.115.154153.

  33. Maurer T, Eiber M, Schwaiger M, Gschwend JE. Current use of PSMA-PET in prostate cancer management. Nat Rev Urol. 2016. https://doi.org/10.1038/nrurol.2016.26.

  34. Eiber M, Weirich G, Holzapfel K, Souvatzoglou M, Haller B, Rauscher I, et al. Simultaneous Ga-PSMA HBED-CC PET/MRI improves the localization of primary prostate cancer. Eur Urol. 2016;70:829–36. https://doi.org/10.1016/j.eururo.2015.12.053.

    Article  CAS  PubMed  Google Scholar 

  35. Benz MR, Allen-Auerbach MS, Eilber FC, Chen HJJ, Dry S, Phelps ME, et al. Combined assessment of metabolic and volumetric changes for assessment of tumor response in patients with soft-tissue sarcomas. J Nucl Med. 2008;49:1579–84. https://doi.org/10.2967/jnumed.108.053694.

    Article  PubMed  Google Scholar 

  36. Yang D-H, Min J-J, Jeong Y, Ahn J-S, Kim Y-K, Cho S-H, et al. The combined evaluation of interim contrast-enhanced computerized tomography (CT) and FDG-PET/CT predicts the clinical outcomes and may impact on the therapeutic plans in patients with aggressive non-Hodgkin’s lymphoma. Ann Hematol. 2009;88:425–32.

    Article  PubMed  Google Scholar 

  37. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–6. https://doi.org/10.1016/j.ejca.2011.11.036.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, et al. Radiomics: the process and the challenges. Magn Reson Imaging. 2012;30:1234–48. https://doi.org/10.1016/j.mri.2012.06.010.

    Article  PubMed  PubMed Central  Google Scholar 

  39. El Naqa I, Grigsby P, Apte A, Kidd E, Donnelly E, Khullar D, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recogn. 2009;42:1162–71. https://doi.org/10.1016/j.patcog.2008.08.011.

    Article  Google Scholar 

  40. Vallieres M, Kay-Rivest E, Perrin LJ, Liem X, Furstoss C, Aerts H, et al. Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci Rep. 2017;7:10117. https://doi.org/10.1038/s41598-017-10371-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kidd EA, El Naqa I, Siegel BA, Dehdashti F, Grigsby PW. FDG-PET-based prognostic nomograms for locally advanced cervical cancer. Gynecol Oncol. 2012;127:136–40. https://doi.org/10.1016/j.ygyno.2012.06.027.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Vallieres M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol. 2015;60:5471–96. https://doi.org/10.1088/0031-9155/60/14/5471.

    Article  CAS  PubMed  Google Scholar 

  43. Vaidya M, Creach KM, Frye J, Dehdashti F, Bradley JD, El Naqa I. Combined PET/CT image characteristics for radiotherapy tumor response in lung cancer. Radiother Oncol. 2012;102:239–45. https://doi.org/10.1016/j.radonc.2011.10.014.

    Article  PubMed  Google Scholar 

  44. Wei L, Osman S, Hatt M, El Naqa I. Machine learning for radiomics-based multimodality and multiparametric modeling. Q J Nucl Med Mol Imaging. 2019;63:323–38. https://doi.org/10.23736/S1824-4785.19.03213-8.

    Article  PubMed  Google Scholar 

  45. Sharif MS, Abbod M, Amira A, Zaidi H. Artificial neural network-based system for PET volume segmentation. J Biomed Imaging. 2010;2010:4.

    Google Scholar 

  46. Zhao X, Li L, Lu W, Tan S. Tumor co-segmentation in PET/CT using multi-modality fully convolutional neural network. Phys Med Biol. 2018;64:015011.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ypsilantis P-P, Siddique M, Sohn H-M, Davies A, Cook G, Goh V, et al. Predicting response to neoadjuvant chemotherapy with PET imaging using convolutional neural networks. PLoS One. 2015;10:e0137036.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Dorbala S, Ananthasubramaniam K, Armstrong IS, Chareonthaitawee P, DePuey EG, Einstein AJ, et al. Single photon emission computed tomography (SPECT) myocardial perfusion imaging guidelines: instrumentation, acquisition, processing, and interpretation. J Nucl Cardiol. 2018;25:1784–846.

    Article  PubMed  Google Scholar 

  49. Arsanjani R, Xu Y, Dey D, Fish M, Dorbala S, Hayes S, et al. Improved accuracy of myocardial perfusion SPECT for the detection of coronary artery disease using a support vector machine algorithm. J Nucl Med. 2013;54:549–55.

    Article  PubMed  Google Scholar 

  50. Betancur J, Otaki Y, Motwani M, Fish MB, Lemley M, Dey D, et al. Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning. JACC Cardiovasc Imaging. 2018;11:1000–9.

    Article  PubMed  Google Scholar 

  51. Betancur J, Hu L-H, Commandeur F, Sharir T, Einstein AJ, Fish MB, et al. Deep learning analysis of upright-supine high-efficiency spect myocardial perfusion imaging for prediction of obstructive coronary artery disease: a multicenter study. J Nucl Med. 2019;60:664–70.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pomper MG, Hammond H, Yu X, Ye Z, Foss CA, Lin DD, et al. Serial imaging of human embryonic stem-cell engraftment and teratoma formation in live mouse models. Cell Res. 2009;19:370.

    Article  CAS  PubMed  Google Scholar 

  53. Khalil MM, Tremoleda JL, Bayomy TB, Gsell W. Molecular SPECT imaging: an overview. Int J Mol Imaging. 2011;2011:796025.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Umeda T, Koizumi M, Fukai S, Miyaji N, Motegi K, Nakazawa S, et al. Evaluation of bone metastatic burden by bone SPECT/CT in metastatic prostate cancer patients: defining threshold value for total bone uptake and assessment in radium-223 treated patients. Ann Nucl Med. 2018;32:105–13.

    Article  CAS  PubMed  Google Scholar 

  55. Fleury V, Ferrer L, Colombié M, Rusu D, Le Thiec M, Kraeber-Bodéré F, et al. Advantages of systematic trunk SPECT/CT to planar bone scan (PBS) in more than 300 patients with breast or prostate cancer. Oncotarget. 2018;9:31744.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ma L, Ma C, Liu Y, Wang X. Thyroid diagnosis from SPECT images using convolutional neural network with optimization. Comput Intell Neurosci. 2019;2019:6212759.

    PubMed  PubMed Central  Google Scholar 

  57. Simanek M, Koranda P. SPECT/CT imaging in breast cancer-current status and challenges. In: Biomedical Papers of the Medical Faculty of Palacky University in Olomouc; 2016. p. 160.

    Google Scholar 

  58. Serrano-Vicente J, Rayo-Madrid J, Domínguez-Grande M, Infante-Torre J, García-Bernardo L, Moreno-Caballero M, et al. Role of SPECT-CT in breast cancer sentinel node biopsy when internal mammary chain drainage is observed. Clin Transl Oncol. 2016;18:418–25.

    Article  CAS  PubMed  Google Scholar 

  59. Wagner T, Buscombe J, Gnanasegaran G, Navalkissoor S. SPECT/CT in sentinel node imaging. Nucl Med Commun. 2013;34:191–202.

    Article  CAS  PubMed  Google Scholar 

  60. Thibault G, Angulo J, Meyer F. Advanced statistical matrices for texture characterization: application to cell classification. IEEE Trans Biomed Eng. 2014;61:630–7. https://doi.org/10.1109/tbme.2013.2284600.

    Article  PubMed  Google Scholar 

  61. Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology. 2020;295:328–38. https://doi.org/10.1148/radiol.2020191145.

    Article  PubMed  Google Scholar 

  62. van Velden FH, Kramer GM, Frings V, Nissen IA, Mulder ER, de Langen AJ, et al. Repeatability of radiomic features in non-small-cell lung cancer [18 F] FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imaging Biol. 2016;18:788–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Leijenaar RT, Nalbantov G, Carvalho S, Van Elmpt WJ, Troost EG, Boellaard R, et al. The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep. 2015;5:11075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tixier F, Hatt M, Le Rest CC, Le Pogam A, Corcos L, Visvikis D. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med. 2012;53:693–700.

    Article  PubMed  Google Scholar 

  65. Cook GJ, Azad G, Owczarczyk K, Siddique M, Goh V. Challenges and promises of PET radiomics. Int J Radiat Oncol Biol Phys. 2018;102:1083–9.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hatt M, Le Rest CC, Descourt P, Dekker A, De Ruysscher D, Oellers M, et al. Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiat Oncol Biol Phys. 2010;77:301–8.

    Article  PubMed  Google Scholar 

  67. Hatt M, Lee JA, Schmidtlein CR, Naqa IE, Caldwell C, De Bernardi E, et al. Classification and evaluation strategies of auto-segmentation approaches for PET: report of AAPM task group no. 211. Med Phys. 2017;44:e1–e42.

    Article  CAS  PubMed  Google Scholar 

  68. El Naqa I, Yang D, Apte A, Khullar D, Mutic S, Zheng J, et al. Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning. Med Phys. 2007;34:4738–49.

    Article  PubMed  Google Scholar 

  69. Conti P, Strauss L. The applications of PET in clinical oncology. J Nucl Med. 1991;32:623–48.

    PubMed  Google Scholar 

  70. Lovinfosse P, Visvikis D, Hustinx R, Hatt M. FDG PET radiomics: a review of the methodological aspects. Clin Trans Imaging. 2018;6:379–91.

    Article  Google Scholar 

  71. El Naqa I. The role of quantitative PET in predicting cancer treatment outcomes. Clin Trans Imaging. 2014;2:305–20.

    Article  Google Scholar 

  72. Strauss LG, Conti PS. The applications of PET in clinical oncology. J Nucl Med. 1991;32:623–48.

    CAS  PubMed  Google Scholar 

  73. Larson SM, Erdi Y, Akhurst T, Mazumdar M, Macapinlac HA, Finn RD, et al. Tumor treatment response based on visual and quantitative changes in global tumor glycolysis using PET-FDG imaging. The visual response score and the change in total lesion glycolysis. Clin Positron Imaging. 1999;2:159–71. S1095039799000163 [pii].

    Article  PubMed  Google Scholar 

  74. Jain AK. Fundamentals of digital image processing. Englewood Cliffs, NJ: Prentice Hall; 1989.

    Google Scholar 

  75. O'Sullivan F, Roy S, O'Sullivan J, Vernon C, Eary J. Incorporation of tumor shape into an assessment of spatial heterogeneity for human sarcomas imaged with FDG-PET. Biostatistics. 2005;6:293–301. https://doi.org/10.1093/biostatistics/kxi010.

    Article  CAS  PubMed  Google Scholar 

  76. O'Sullivan F, Roy S, Eary J. A statistical measure of tissue heterogeneity with application to 3D PET sarcoma data. Biostatistics. 2003;4:433–48. https://doi.org/10.1093/biostatistics/4.3.433.

    Article  PubMed  Google Scholar 

  77. Castleman KR. Digital image processing. Englewood Cliffs, NJ: Prentice Hall; 1996.

    Google Scholar 

  78. Haralick R, Shanmugam K, Dinstein I. Texture features for image classification. IEEE Trans Sys Man Cyb SMC. 1973;3:610–21.

    Article  Google Scholar 

  79. Zhang J, Tan T. Brief review of invariant texture analysis methods. Pattern Recogn. 2002;35:735–47. https://doi.org/10.1016/S0031-3203(01)00074-7.

    Article  Google Scholar 

  80. Castellano G, Bonilha L, Li LM, Cendes F. Texture analysis of medical images. Clin Radiol. 2004;59:1061–9. https://doi.org/10.1016/j.crad.2004.07.008.

    Article  CAS  PubMed  Google Scholar 

  81. Chicklore S, Goh V, Siddique M, Roy A, Marsden P, Cook GR. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging. 2013;40:133–40. https://doi.org/10.1007/s00259-012-2247-0.

    Article  PubMed  Google Scholar 

  82. Galloway MM. Texture analysis using grey level run lengths. NASA STI/Recon Technical Report N. 75; 1974.

    Google Scholar 

  83. Thibault G, Fertil B, Navarro C, Pereira S, Cau P, Levy N, et al. Shape and texture indexes application to cell nuclei classification. Int J Pattern Recogn Artif Intell. 2013;27:1357002.

    Article  Google Scholar 

  84. Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges J-P, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52:369–78.

    Article  PubMed  Google Scholar 

  85. Cheng N-M, Dean Fang Y-H, Tung-Chieh Chang J, Huang C-G, Tsan D-L, Ng S-H, et al. Textural features of pretreatment 18F-FDG PET/CT images: prognostic significance in patients with advanced T-stage oropharyngeal squamous cell carcinoma. J Nucl Med. 2013;54:1703–9. https://doi.org/10.2967/jnumed.112.119289.

    Article  CAS  PubMed  Google Scholar 

  86. Cook GJR, Yip C, Siddique M, Goh V, Chicklore S, Roy A, et al. Are pretreatment 18F-FDG PET tumor textural features in non–small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med. 2013;54:19–26. https://doi.org/10.2967/jnumed.112.107375.

    Article  PubMed  Google Scholar 

  87. Watabe H, Ikoma Y, Kimura Y, Naganawa M, Shidahara M. PET kinetic analysis—compartmental model. Ann Nucl Med. 2006;20:583–8.

    Article  CAS  PubMed  Google Scholar 

  88. Graham MM, Peterson LM, Hayward RM. Comparison of simplified quantitative analyses of FDG uptake. Nucl Med Biol. 2000;27:647–55.

    Article  CAS  PubMed  Google Scholar 

  89. Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab. 1985;5:584–90.

    Article  CAS  PubMed  Google Scholar 

  90. Choi NC, Fischman AJ, Niemierko A, Ryu JS, Lynch T, Wain J, et al. Dose-response relationship between probability of pathologic tumor control and glucose metabolic rate measured with FDG PET after preoperative chemoradiotherapy in locally advanced non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2002;54:1024–35.

    Article  PubMed  Google Scholar 

  91. Thorwarth D, Eschmann S-M, Holzner F, Paulsen F, Alber M. Combined uptake of [18F]FDG and [18F]FMISO correlates with radiation therapy outcome in head-and-neck cancer patients. Radiother Oncol. 2006;80:151–6.

    Article  CAS  PubMed  Google Scholar 

  92. Thorwarth D, Eschmann S-M, Paulsen F, Alber M. A model of reoxygenation dynamics of head-and-neck tumors based on serial 18F-Fluoromisonidazole positron emission tomography investigations. Int J Radiat Oncol Biol Phys. 2007;68:515–21.

    Article  CAS  PubMed  Google Scholar 

  93. Turkheimer FE, Aston JA, Asselin MC, Hinz R. Multi-resolution Bayesian regression in PET dynamic studies using wavelets. Neuroimage. 2006;32:111–21. https://doi.org/10.1016/j.neuroimage.2006.03.002.

    Article  CAS  PubMed  Google Scholar 

  94. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc B Methodol. 1996;58:267–88.

    Google Scholar 

  95. Wold S, Esbensen K, Geladi P. Principal component analysis. Chemom Intel Lab Syst. 1987;2:37–52.

    Article  CAS  Google Scholar 

  96. van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579–605.

    Google Scholar 

  97. Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ. Machine learning methods for quantitative radiomic biomarkers. Sci Rep. 2015;5:13087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vallières M, Kay-Rivest E, Perrin LJ, Liem X, Furstoss C, Aerts HJ, et al. Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci Rep. 2017;7:10117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Wu S, Zheng J, Li Y, Wu Z, Shi S, Huang M, et al. Development and validation of an MRI-based radiomics signature for the preoperative prediction of lymph node metastasis in bladder cancer. EBioMedicine. 2018;34:76–84.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zhang Y, Oikonomou A, Wong A, Haider MA, Khalvati F. Radiomics-based prognosis analysis for non-small cell lung cancer. Sci Rep. 2017;7:46349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. El Naqa I, Murphy MJ. What is machine learning? Machine Learning in Radiation Oncology. Berlin: Springer; 2015. p. 3–11.

    Book  Google Scholar 

  102. Hastie T, Tibshirani R, Friedman J, Franklin J. The elements of statistical learning: data mining, inference and prediction. Math Intell. 2005;27:83–5.

    Google Scholar 

  103. Cox DR. Regression models and life-tables. J R Stat Soc B Methodol. 1972;34:187–202.

    Google Scholar 

  104. Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests. Ann Appl Stat. 2008;2:841–60.

    Article  Google Scholar 

  105. Van Belle V, Pelckmans K, Van Huffel S, Suykens JA. Support vector methods for survival analysis: a comparison between ranking and regression approaches. Artif Intell Med. 2011;53:107–18.

    Article  PubMed  Google Scholar 

  106. Katzman JL, Shaham U, Cloninger A, Bates J, Jiang T, Kluger Y. DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med Res Methodol. 2018;18:24.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ching T, Zhu X, Garmire LX. Cox-nnet: an artificial neural network method for prognosis prediction of high-throughput omics data. PLoS Comput Biol. 2018;14:e1006076.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Joachims T. Transductive inference for text classification using support vector machines: ICML; 1999. p. 200–9.

    Google Scholar 

  109. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436.

    Article  CAS  PubMed  Google Scholar 

  110. Suzuki K. Pixel-based machine learning in medical imaging. J Biomed Imaging. 2012;2012:1.

    Google Scholar 

  111. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556. 2014.

    Google Scholar 

  112. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–8.

    Google Scholar 

  113. Hubel DH, Wiesel TN. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968;195:215–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9:1735–80.

    Article  CAS  PubMed  Google Scholar 

  115. Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:14061078. 2014.

    Google Scholar 

  116. Kingma DP, Welling M. Auto-encoding variational bayes. arXiv preprint arXiv:13126114. 2013.

    Google Scholar 

  117. Li F, Qiao H, Zhang B. Discriminatively boosted image clustering with fully convolutional auto-encoders. Pattern Recogn. 2018;83:161–73.

    Article  Google Scholar 

  118. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313:504–7.

    Article  CAS  PubMed  Google Scholar 

  119. Kingma DP, Mohamed S, Rezende DJ, Welling M. Semi-supervised learning with deep generative models. In: Advances in neural information processing systems; 2014. p. 3581–9.

    Google Scholar 

  120. El Naqa I, Li R, Murphy MJ, editors. Machine learning in radiation oncology: theory and application. 1st ed. Cham: Springer International; 2015.

    Google Scholar 

  121. Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge, MA: MIT Press; 2017.

    Google Scholar 

  122. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition; 2015. p. 3431–40.

    Google Scholar 

  123. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Berlin: Springer; 2015. p. 234–41.

    Google Scholar 

  124. Shen D, Wu G, Suk H-I. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;19:221–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Efron B. Bootstrap methods: another look at the jackknife. In: Breakthroughs in statistics. Berlin: Springer; 1992. p. 569–93.

    Chapter  Google Scholar 

  126. Efron B. Better bootstrap confidence intervals. J Am Stat Assoc. 1987;82:171–85.

    Article  Google Scholar 

  127. Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steyerberg EW, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162:W1–W73.

    Article  PubMed  Google Scholar 

  128. Ambroise C, McLachlan GJ. Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci U S A. 2002;99:6562–6. https://doi.org/10.1073/pnas.102102699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Singhi SK, Liu H. Feature subset selection bias for classification learning. In: Proceedings of the 23rd International Conference on machine learning. New York: ACM; 2006. p. 849–56.

    Chapter  Google Scholar 

  130. Zwanenburg A. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur J Nucl Med Mol Imaging. 2019;46(13):2638–55.

    Article  PubMed  Google Scholar 

  131. Wang Y, Zhang P, An L, Ma G, Kang J, Shi F, et al. Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping-based sparse representation. Phys Med Biol. 2016;61:791.

    Article  CAS  PubMed  Google Scholar 

  132. Wang Y, Ma G, An L, Shi F, Zhang P, Lalush DS, et al. Semisupervised tripled dictionary learning for standard-dose PET image prediction using low-dose PET and multimodal MRI. IEEE Trans Biomed Eng. 2016;64:569–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang Y, Yu B, Wang L, Zu C, Lalush DS, Lin W, et al. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. Neuroimage. 2018;174:550–62.

    Article  PubMed  Google Scholar 

  134. Gong K, Guan J, Kim K, Zhang X, Yang J, Seo Y, et al. Iterative PET image reconstruction using convolutional neural network representation. IEEE Trans Med Imaging. 2019;38:675–85.

    Article  Google Scholar 

  135. Ulyanov D, Vedaldi A, Lempitsky V. Deep image prior. Proc IEEE Conf Comput Vis Pattern Recogn. 2018:9446–54.

    Google Scholar 

  136. Gong K, Catana C, Qi J, Li Q. PET image reconstruction using deep image prior. IEEE Trans Med Imaging. 2018;38(7):1655–65.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Floyd C. An artificial neural network for SPECT image reconstruction. IEEE Trans Med Imaging. 1991;10:485–7.

    Article  CAS  PubMed  Google Scholar 

  138. Wong CY, Schmidt J, Bong JS, Chundru S, Kestin L, Yan D, et al. Correlating metabolic and anatomic responses of primary lung cancers to radiotherapy by combined F-18 FDG PET-CT imaging. Radiat Oncol. 2007;2:18. https://doi.org/10.1186/1748-717X-2-18.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Coon D, Gokhale AS, Burton SA, Heron DE, Ozhasoglu C, Christie N. Fractionated stereotactic body radiation therapy in the treatment of primary, recurrent, and metastatic lung tumors: the role of positron emission tomography/computed tomography-based treatment planning. Clin Lung Cancer. 2008;9:217–21. https://doi.org/10.3816/CLC.2008.n.032.

    Article  PubMed  Google Scholar 

  140. Steel GG. Basic clinical radiobiology. 3rd ed. London, New York: Arnold; Oxford University Press; 2002.

    Google Scholar 

  141. Webb S. The physics of three-dimensional radiation therapy: conformal radiotherapy, radiosurgery, and treatment planning. Bristol, UK; Philadelphia: Institute of Physics; 2001.

    Google Scholar 

  142. El Naqa I. Outcomes modeling. In: Starkschall G, Siochi C, editors. Informatics in radiation oncology. Boca Raton, FL: CRC, Taylor and Francis; 2013. p. 257–75.

    Google Scholar 

  143. El Naqa I, Suneja G, Lindsay PE, Hope AJ, Alaly JR, Vicic M, et al. Dose response explorer: an integrated open-source tool for exploring and modelling radiotherapy dose-volume outcome relationships. Phys Med Biol. 2006;51:5719–35.

    Article  PubMed  Google Scholar 

  144. El-Naqa I, Yang Y, Galatsanos NP, Nishikawa RM, Wernick MN. A similarity learning approach to content-based image retrieval: application to digital mammography. IEEE Trans Med Imaging. 2004;23:1233–44. https://doi.org/10.1109/TMI.2004.834601.

    Article  PubMed  Google Scholar 

  145. Lovinfosse P, Janvary ZL, Coucke P, Jodogne S, Bernard C, Hatt M, et al. FDG PET/CT texture analysis for predicting the outcome of lung cancer treated by stereotactic body radiation therapy. Eur J Nucl Med Mol Imaging. 2016;43:1453–60.

    Article  CAS  PubMed  Google Scholar 

  146. Yip SS, Kim J, Coroller TP, Parmar C, Velazquez ER, Huynh E, et al. Associations between somatic mutations and metabolic imaging phenotypes in non–small cell lung cancer. J Nucl Med. 2017;58:569–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hsu C-Y, Doubrovin M, Hua C-H, Mohammed O, Shulkin BL, Kaste S, et al. Radiomics features differentiate between normal and tumoral high-Fdg uptake. Sci Rep. 2018;8:3913.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Budán F, Szigeti K, Weszl M, Horváth I, Balogh E, Kanaan R, et al. Novel radiomics evaluation of bone formation utilizing multimodal (SPECT/X-ray CT) in vivo imaging. PLoS One. 2018;13:e0204423.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Rahmim A, Salimpour Y, Jain S, Blinder SA, Klyuzhin IS, Smith GS, et al. Application of texture analysis to DAT SPECT imaging: relationship to clinical assessments. NeuroImage Clin. 2016;12:e1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Ashrafinia S, Dalaie P, Yan R, Ghazi P, Marcus C, Taghipour M, et al. Radiomics analysis of clinical myocardial perfusion SPECT to predict coronary artery calcification. J Nucl Med. 2018;59:512.

    Google Scholar 

  151. Kawauchi K, Hirata K, Katoh C, Ichikawa S, Manabe O, Kobayashi K, et al. A convolutional neural network-based system to prevent patient misidentification in FDG-PET examinations. Sci Rep. 2019;9:7192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Schwyzer M, Ferraro DA, Muehlematter UJ, Curioni-Fontecedro A, Huellner MW, von Schulthess GK, et al. Automated detection of lung cancer at ultralow dose PET/CT by deep neural networks—initial results. Lung Cancer. 2018;126:170–3.

    Article  PubMed  Google Scholar 

  153. Park J, Bae S, Seo S, Park S, Bang J-I, Han JH, et al. Measurement of glomerular filtration rate using quantitative SPECT/CT and deep-learning-based kidney segmentation. Sci Rep. 2019;9:1–8.

    Google Scholar 

  154. Moses WW. Fundamental limits of spatial resolution in PET. Nucl Instrum Meth Phys Res A. 2011;648(Supplement 1):S236–S40. https://doi.org/10.1016/j.nima.2010.11.092.

    Article  CAS  Google Scholar 

  155. Tong S, Alessio AM, Kinahan PE. Image reconstruction for PET/CT scanners: past achievements and future challenges. Imaging Med. 2010;2:529–45. https://doi.org/10.2217/iim.10.49.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Nahmias C, Wahl LM. Reproducibility of standardized uptake value measurements determined by 18F-FDG PET in malignant tumors. J Nucl Med. 2008;49:1804–8. https://doi.org/10.2967/jnumed.108.054239.

    Article  PubMed  Google Scholar 

  157. Kinahan PE, Fletcher JW. Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin Ultrasound CT MRI. 2010;31:496–505. https://doi.org/10.1053/j.sult.2010.10.001.

    Article  Google Scholar 

  158. Hatt M, Cheze-Le Rest C, Aboagye EO, Kenny LM, Rosso L, Turkheimer FE, et al. Reproducibility of 18F-FDG and 3′-Deoxy-3′-18F-Fluorothymidine PET tumor volume measurements. J Nucl Med. 2010;51:1368–76. https://doi.org/10.2967/jnumed.110.078501.

    Article  CAS  PubMed  Google Scholar 

  159. Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol. 2010;49:1012–6. https://doi.org/10.3109/0284186X.2010.498437.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Cheng NM, Fang YH, Yen TC. The promise and limits of PET texture analysis. Ann Nucl Med. 2013;27:867–9. https://doi.org/10.1007/s12149-013-0759-8.

    Article  CAS  PubMed  Google Scholar 

  161. Lovat E, Siddique M, Goh V, Ferner RE, Cook GJ, Warbey VS. The effect of post-injection 18 F-FDG PET scanning time on texture analysis of peripheral nerve sheath tumours in neurofibromatosis-1. EJNMMI Res. 2017;7:35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Lasnon C, Majdoub M, Lavigne B, Do P, Madelaine J, Visvikis D, et al. 18 F-FDG PET/CT heterogeneity quantification through textural features in the era of harmonisation programs: a focus on lung cancer. Eur J Nucl Med Mol Imaging. 2016;43:2324–35.

    Article  PubMed  Google Scholar 

  163. Hatt M, Majdoub M, Vallières M, Tixier F, Le Rest CC, Groheux D, et al. 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi–cancer site patient cohort. J Nucl Med. 2015;56:38–44.

    Article  CAS  PubMed  Google Scholar 

  164. Lv W, Yuan Q, Wang Q, Ma J, Jiang J, Yang W, et al. Robustness versus disease differentiation when varying parameter settings in radiomics features: application to nasopharyngeal PET/CT. Eur Radiol. 2018;28:3245–54.

    Article  PubMed  Google Scholar 

  165. Foy JJ, Robinson KR, Li H, Giger ML, Al-Hallaq H, Armato SG. Variation in algorithm implementation across radiomics software. J Med Imaging. 2018;5:044505.

    Article  Google Scholar 

  166. Traverso A, Wee L, Dekker A, Gillies R. Repeatability and reproducibility of radiomic features: a systematic review. Int J Radiat Oncol Biol Phys. 2018;102:1143–58.

    Article  PubMed  PubMed Central  Google Scholar 

  167. El Naqa I, Kawrakow I, Fippel M, Siebers JV, Lindsay PE, Wickerhauser MV, et al. A comparison of Monte Carlo dose calculation denoising techniques. Phys Med Biol. 2005;50:909–22. https://doi.org/10.1088/0031-9155/50/5/014.

    Article  PubMed  Google Scholar 

  168. Zaidi H, Abdoli M, Fuentes CL, El Naqa IM. Comparative methods for PET image segmentation in pharyngolaryngeal squamous cell carcinoma. Eur J Nucl Med Mol Imaging. 2012;39:881–91. https://doi.org/10.1007/s00259-011-2053-0.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Le Pogam A, Hanzouli H, Hatt M, Cheze Le Rest C, Visvikis D. Denoising of PET images by combining wavelets and curvelets for improved preservation of resolution and quantitation. Med Image Anal. 17:877–91. https://doi.org/10.1016/j.media.2013.05.005.

  170. Wei L, Rosen B, Vallières M, Chotchutipan T, Mierzwa M, Eisbruch A, et al. Automatic recognition and analysis of metal streak artifacts in head and neck computed tomography for radiomics modeling. Phys Imaging Radiat Oncol. 2019;10:49–54.

    Article  PubMed  PubMed Central  Google Scholar 

  171. El Naqa I, Bradley J, Deasy J. Machine learning methods for radiobiological outcome modeling. In: Mehta M, Paliwal B, Bentzen S, editors. Physical, chemical, and biological targeting in radiation oncology. Madison, WI: Medical Physics Publishing; 2005.

    Google Scholar 

  172. El-Naqa I, Yang Y, Galatsanos NP, Nishikawa RM, Wernick MN. A similarity learning approach to content-based image retrieval: application to digital mammography. IEEE Trans Med Imaging. 2004;23:1233–44.

    Article  PubMed  Google Scholar 

  173. El-Naqa I, Yang Y, Wernick MN, Galatsanos NP, Nishikawa RM. A support vector machine approach for detection of microcalcifications. IEEE Trans Med Imaging. 2002;21:1552–63.

    Article  PubMed  Google Scholar 

  174. Schèolkopf B, Tsuda K, Vert J-P. Kernel methods in computational biology. Cambridge, MA: MIT Press; 2004.

    Book  Google Scholar 

  175. Shawe-Taylor J, Cristianini N. Kernel methods for pattern analysis. Cambridge, New York: Cambridge University Press; 2004.

    Book  Google Scholar 

  176. Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: data mining, inference, and prediction: with 200 full-color illustrations. New York: Springer; 2001.

    Google Scholar 

  177. Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:12070580. 2012.

    Google Scholar 

  178. Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:150203167. 2015.

    Google Scholar 

  179. Yosinski J, Clune J, Nguyen A, Fuchs T, Lipson H. Understanding neural networks through deep visualization. In: arXiv preprint arXiv:150606579; 2015.

    Google Scholar 

  180. Sankar V, Kumar D, Clausi DA, Taylor GW, Wong ASISC. End-to-end interpretable discovery Radiomics-driven lung cancer prediction via stacked interpretable sequencing cells. In: arXiv preprint arXiv:190104641; 2019.

    Google Scholar 

  181. Luo Y, McShan D, Ray D, Matuszak M, Jolly S, Lawrence T, et al. Development of a fully cross-validated Bayesian network approach for local control prediction in lung cancer. IEEE Trans Radiat Plasma Med Sci. 2019;3:232–41.

    Article  PubMed  Google Scholar 

  182. Ribeiro MT, Singh S, Guestrin C. Why should i trust you?: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. New York: ACM; 2016. p. 1135–44.

    Chapter  Google Scholar 

  183. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision; 2017. p. 618–26.

    Google Scholar 

  184. Chattopadhay A, Sarkar A, Howlader P, Balasubramanian VN. Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks. 2018 IEEE winter conference on applications of computer vision (WACV). New York: IEEE; 2018. p. 839–47.

    Google Scholar 

  185. Nie K, Al-Hallaq H, Li XA, Benedict SH, Sohn JW, Moran JM, et al. NCTN assessment on current applications of radiomics in oncology. Int J Radiat Oncol Biol Phys. 2019;104:302–15. https://doi.org/10.1016/j.ijrobp.2019.01.087.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issam El Naqa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wei, L., El Naqa, I. (2021). Fundamentals of Radiomics in Nuclear Medicine and Hybrid Imaging. In: Khalil, M.M. (eds) Basic Sciences of Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-65245-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65245-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65244-9

  • Online ISBN: 978-3-030-65245-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics