Skip to main content

Sequential Solutions in Machine Scheduling Games

  • Conference paper
  • First Online:
Web and Internet Economics (WINE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12495))

Included in the following conference series:

Abstract

We consider the classical machine scheduling, where n jobs need to be scheduled on m machines, and where job j scheduled on machine i contributes \(p_{i,j}\in \mathbb {R}\) to the load of machine i, with the goal of minimizing the makespan, i.e., the maximum load of any machine in the schedule. We study inefficiency of schedules that are obtained when jobs arrive sequentially one by one, and the jobs choose themselves the machine on which they will be scheduled, aiming at being scheduled on a machine with small load. We measure the inefficiency of a schedule as the ratio of the makespan obtained in the worst-case equilibrium schedule, and of the optimum makespan. This ratio is known as the sequential price of anarchy (SPoA). We also introduce two alternative inefficiency measures, which allow for a favorable choice of the order in which the jobs make their decisions. As our first result, we disprove the conjecture of  [22] claiming that the sequential price of anarchy for \(m=2\) machines is at most 3. We show that the sequential price of anarchy grows at least linearly with the number n of players, assuming arbitrary tie-breaking rules. That is, we show \(\mathbf{SPoA} \in \varOmega (n)\). Complementing this result, we show that \(\mathbf{SPoA} \in O(n)\), reducing previously known exponential bound for 2 machines. Furthermore, we show that there exists an order of the jobs, resulting in makespan that is at most linearly larger than the optimum makespan. To the end, we show that if an authority can change the order of the jobs adaptively to the decisions made by the jobs so far (but cannot influence the decisions of the jobs), then there exists an adaptive ordering in which the jobs end up in an optimum schedule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    When each player chooses deterministically one machine, this definition is obvious. When equilibria are mixed or randomized, each player chooses one machine according to some probability distribution, and the social cost is the expected makespan of the resulting schedule.

References

  1. Abed, F., Correa, J.R., Huang, C.-C.: Optimal coordination mechanisms for multi-job scheduling games. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 13–24. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44777-2_2

    Chapter  Google Scholar 

  2. Andelman, N., Feldman, M., Mansour, Y.: Strong price of anarchy. Games Econ. Behav. 2(65), 289–317 (2009)

    Article  MathSciNet  Google Scholar 

  3. Angelucci, A., Bilò, V., Flammini, M., Moscardelli, L.: On the sequential price of anarchy of isolation games. J. Comb. Optim. 29(1), 165–181 (2013). https://doi.org/10.1007/s10878-013-9694-9

    Article  MathSciNet  MATH  Google Scholar 

  4. Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. SIAM J. Comput. 38(4), 1602–1623 (2008)

    Article  MathSciNet  Google Scholar 

  5. Awerbuch, B., Azar, Y., Richter, Y., Tsur, D.: Tradeoffs in worst-case equilibria. Theoret. Comput. Sci. 361(2), 200–209 (2006)

    Article  MathSciNet  Google Scholar 

  6. Azar, Y., Fleischer, L., Jain, K., Mirrokni, V., Svitkina, Z.: Optimal coordination mechanisms for unrelated machine scheduling. Oper. Res. 63(3), 489–500 (2015)

    Article  MathSciNet  Google Scholar 

  7. Bilò, V., Flammini, M., Monaco, G., Moscardelli, L.: Some anomalies of farsighted strategic behavior. Theory Comput. Syst. 56(1), 156–180 (2015). https://doi.org/10.1007/978-3-642-38016-7_19

    Article  MathSciNet  MATH  Google Scholar 

  8. Caragiannis, I.: Efficient coordination mechanisms for unrelated machine scheduling. Algorithmica 66(3), 512–540 (2013)

    Article  MathSciNet  Google Scholar 

  9. Caragiannis, I., Fanelli, A.: An almost ideal coordination mechanism for unrelated machine scheduling. Theory Comput. Syst. 63(1), 114–127 (2018). https://doi.org/10.1007/s00224-018-9857-2

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, B., Potts, C.N., Woeginger, G.J.: A review of machine scheduling: complexity, algorithms and approximability. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization. Springer, Boston (1998). https://doi.org/10.1007/978-1-4613-0303-9_25

    Chapter  Google Scholar 

  11. Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. Theor. Comput. Sci. 410(36), 3327–3336 (2009). Graphs, Games and Computation: Dedicated to Professor Burkhard Monien on the Occasion of his 65th Birthday

    Google Scholar 

  12. Cole, R., Correa, J.R., Gkatzelis, V., Mirrokni, V., Olver, N.: Decentralized utilitarian mechanisms for scheduling games. Games Econ. Behav. 92, 306–326 (2015)

    Article  MathSciNet  Google Scholar 

  13. Correa, J.R., de Jong, J., de Keijzer, B., Uetz, M.: The inefficiency of Nash and subgame perfect equilibria for network routing. Math. Oper. Res. 44(4), 1286–1303 (2019)

    Article  MathSciNet  Google Scholar 

  14. Correa, J.R., Queyranne, M.: Efficiency of equilibria in restricted uniform machine scheduling with total weighted completion time as social cost. Naval Res. Logist. (NRL) 59(5), 384–395 (2012)

    Article  MathSciNet  Google Scholar 

  15. Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. ACM Trans. Algorithms 3(1), 4:1–4:17 (2007)

    Article  MathSciNet  Google Scholar 

  16. Epstein, L.: Equilibria for two parallel links: the strong price of anarchy versus the price of anarchy. Acta Informatica 47(7), 375–389 (2010)

    Article  MathSciNet  Google Scholar 

  17. Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence time to Nash equilibria. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 502–513. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45061-0_41

    Chapter  Google Scholar 

  18. Feldmann, R., Gairing, M., Lücking, T., Monien, B., Rode, M.: Nashification and the coordination ratio for a selfish routing game. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 514–526. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45061-0_42

    Chapter  MATH  Google Scholar 

  19. Fiat, A., Kaplan, H., Levy, M., Olonetsky, S.: Strong price of anarchy for machine load balancing. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 583–594. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73420-8_51

    Chapter  Google Scholar 

  20. Finn, G., Horowitz, E.: A linear time approximation algorithm for multiprocessor scheduling. BIT Numer. Math. 19(3), 312–320 (1979). https://doi.org/10.1007/BF01930985

    Article  MathSciNet  MATH  Google Scholar 

  21. Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The structure and complexity of Nash equilibria for a selfish routing game. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9_12

    Chapter  MATH  Google Scholar 

  22. Hassin, R., Yovel, U.: Sequential scheduling on identical machines. Oper. Res. Lett. 43(5), 530–533 (2015)

    Article  MathSciNet  Google Scholar 

  23. Hoeksma, R., Uetz, M.: The price of anarchy for Minsum related machine scheduling. In: Solis-Oba, R., Persiano, G. (eds.) WAOA 2011. LNCS, vol. 7164, pp. 261–273. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29116-6_22

    Chapter  Google Scholar 

  24. Immorlica, N., Li, L.E., Mirrokni, V.S., Schulz, A.S.: Coordination mechanisms for selfish scheduling. Theoret. Comput. Sci. 410(17), 1589–1598 (2009)

    Article  MathSciNet  Google Scholar 

  25. de Jong, J., Uetz, M.: The sequential price of anarchy for atomic congestion games. In: Liu, T.-Y., Qi, Q., Ye, Y. (eds.) WINE 2014. LNCS, vol. 8877, pp. 429–434. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13129-0_35

    Chapter  Google Scholar 

  26. Koutsoupias, E., Mavronicolas, M., Spirakis, P.: Approximate equilibria and ball fusion. Theory Comput. Syst. 36(6), 683–693 (2003). https://doi.org/10.1007/s00224-003-1131-5

    Article  MathSciNet  MATH  Google Scholar 

  27. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49116-3_38

    Chapter  Google Scholar 

  28. Leme, R.P., Syrgkanis, V., Tardos, É.: The curse of simultaneity. In: Proceedings of Innovations in Theoretical Computer Science (ITCS), pp. 60–67 (2012)

    Google Scholar 

  29. Pinedo, M., Hadavi, K.: Scheduling: theory, algorithms and systems development. In: Gaul, W., Bachem, A., Habenicht, W., Runge, W., Stahl, W.W. (eds.) Operations Research Proceedings 1991. Operations Research Proceedings 1991, vol 1991. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-46773-8_5

  30. Tranæs, T.: Tie-breaking in games of perfect information. Games Econ. Behav. 22(1), 148–161 (1998)

    Article  MathSciNet  Google Scholar 

  31. Zhang, L., Zhang, Y., Du, D., Bai, Q.: Improved price of anarchy for machine scheduling games with coordination mechanisms. Optim. Lett. 13(4), 949–959 (2018). https://doi.org/10.1007/s11590-018-1285-3

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

We are grateful to Thomas Erlebach for spotting a mistake in an earlier proof of Theorem 6 and for suggesting a fix of the proof. We thank Paul Dütting for valuable discussions. We also thank anonymous reviewers and seminar participants of OR 2016 for suggestions that improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akaki Mamageishvili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, C., Giessler, P., Mamageishvili, A., Mihalák, M., Penna, P. (2020). Sequential Solutions in Machine Scheduling Games. In: Chen, X., Gravin, N., Hoefer, M., Mehta, R. (eds) Web and Internet Economics. WINE 2020. Lecture Notes in Computer Science(), vol 12495. Springer, Cham. https://doi.org/10.1007/978-3-030-64946-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64946-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64945-6

  • Online ISBN: 978-3-030-64946-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics