Skip to main content

Chapter 2 Stomatal Responses to Climate Change

  • Chapter
  • First Online:
Photosynthesis, Respiration, and Climate Change

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 48))

Abstract

There remains an ongoing need to make crops more productive in the face of further increases in atmospheric CO2 concentrations as predicted under climate change, along with higher global surface temperatures and more prolonged, severe and frequent periods of drought . With over 90 % of water transpired by plants diffusing through stomata, studying these small, morphologically varied valves in leaf surfaces remains critical to our understanding the consequences of climate change on stomatal responses, and by extension crop productivity. In the short term, stomata adjust aperture in response to changes in environmental variables affecting carbon assimilation and water loss. In the longer term, adjustments to stomatal density and size may occur, in conjunction with a range of other responses from the plant.

Abbreviations: A – Assimilation rate of CO2 (μmol m-2 s-1); ABA – Abscisic acid; Ci – Leaf internal CO2 concentration; C3 – Plants exhibiting C3 photosynthetic pathway; C4 – Plants exhibiting C4 photosynthetic pathway; [CO2] – CO2 concentration; e[CO2] – Elevated CO2 concentration; GC – Guard cell(s); GMC – Guard mother cell(s); gs – Stomatal conductance to water vapour (mmol or mol m-2 s-1); ROS – Reactive oxygen species; VPD – Vapour pressure deficit; WUEi – Intrinsic water use efficiency (A gs-1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aasamaa K, Sober A, Rahi M (2001) Leaf anatomical characteristics associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees. Aus J Plant Physiol 28:765–774

    Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. New Phytol 165:351–371

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  CAS  PubMed  Google Scholar 

  • Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci 6:36–42

    Article  CAS  PubMed  Google Scholar 

  • Amin S, Bongaarts J, Mcnicoll G, Todaro MP (2006) 2006 state of the future. Population Develop Rev 32:787–787

    Google Scholar 

  • Aprile A, Havlickova L, Panna R, Mare C, Borrelli GM, Marone D, Perrotta C, Rampino P, …, Cattivelli L (2013) Different stress responsive strategies to drought and heat in two durum wheat cultivars with contrasting water use efficiency. BMC Genomics 14:1–18

    Google Scholar 

  • Assmann SM, Shimazaki K (1999) The multisensory guard cell. Stomatal responses to blue light and abscisic acid. Plant Physiol 119:809–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543

    Article  CAS  PubMed  Google Scholar 

  • Balota M, William AP, Evett SR, Peters TR (2008) Morphological and physiological traits associated with canopy temperature depression in three closely related wheat lines. Crop Sci 48:1897–1910

    Article  Google Scholar 

  • Bauer H, Ache P, Lautner S, Fromm J, Hartung W, Al-Rasheid KAS, Sonnewald S, Sonnewald U, …, Hedrich R (2013) The Stomatal Response to Reduced Relative Humidity Requires Guard Cell-Autonomous ABA Synthesis. Curr Biol 23:53–57

    Google Scholar 

  • Bechtold U, Ferguson JN, Mullineaux PM (2018) To defend or to grow: lessons from Arabidopsis C24. J Exp Bot 69:2809–2821

    Article  CAS  PubMed  Google Scholar 

  • Beerling DJ, Chaloner WG (1993) The impact of atmospheric CO2 and temperature change on stomatal density - observations from Quercus robur lammas leaves. Ann Bot 71:231–235

    Article  CAS  Google Scholar 

  • Beerling DJ, Woodward FI (1997) Changes in land plant function over the Phanerozoic: Reconstructions based on the fossil record. Botanic J Linnean Soc 124:137–153

    Article  Google Scholar 

  • Beerling DJ, Woodward FI, Lomas M, Jenkins AJ (1997) Testing the responses of a dynamic global vegetation model to environmental change: a comparison of observations and predictions. Glob Ecol Biogeogr Lett 6:439–450

    Article  Google Scholar 

  • Bergmann DC, Sack FD (2007) Stomatal development. Annu Rev Plant Biol 58:163–181

    Article  CAS  PubMed  Google Scholar 

  • Berry JA, Beerling DJ, Franks PJ (2010) Stomata: key players in the earth system, past and present. Curr Opin Plant Biol 13:232–239

    Article  Google Scholar 

  • Bertolino LT, Caine RS, Gray JE (2019) Impact of Stomatal Density and Morphology on Water-Use Efficiency in a Changing World. Front Plant Sci 10

    Google Scholar 

  • Betts RA, Boucher O, Collins M, Cox PM, Falloon PD, Gedney N, Hemming DL, Huntingford C, …, Webb MJ 2007) Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448:1037–10U5

    Google Scholar 

  • Blatt MR (2000) Cellular signaling and volume control in stomatal movements in plants. Annu Rev Cell Dev Biol 16:221–241

    Article  CAS  PubMed  Google Scholar 

  • Bloom AJ, Zwieniecki MA, Passioura JB, Randall LB, Holbrook NM, ST Clair DA (2004) Water relations under root chilling in a sensitive and tolerant tomato species. Plant Cell Environ 27:971–979

    Article  Google Scholar 

  • Box JE (1986) Winter-wheat grain-yield responses to soil oxygen diffusion rates. Crop Sci 26:355–361

    Article  Google Scholar 

  • Bradford KJ, Hsiao TC (1982) Stomatal behavior and water relations of waterlogged tomato plants. Plant Physiol 70:1508–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brearley J, Venis MA, Blatt MR (1997) The effect of elevated CO2 concentrations on K+ and anion channels of Vicia faba L. guard cells. Planta 203:145–154

    Article  CAS  Google Scholar 

  • Brodribb TJ, McAdam SAM, Jordan GJ, Feild TS (2009) Evolution of stomatal responsiveness to CO2 and optimization of water-use efficiency among land plants. New Phytol 183:839–847

    Article  PubMed  Google Scholar 

  • Brodribb TJ, Feild TS, Sack L (2010) Viewing leaf structure and evolution from a hydraulic perspective. Funct Plant Biol 37:488–498

    Article  Google Scholar 

  • Buckley TN, Mott KA (2013) Modelling stomatal conductance in response to environmental factors. Plant Cell Environ 36:1691–1699

    Article  PubMed  Google Scholar 

  • Buckley TN, Sack L, Farquhar GD (2017) Optimal plant water economy. Plant Cell Environ 40:881–896

    Article  CAS  PubMed  Google Scholar 

  • Cai C, Yin XY, He SQ, Jiang WY, Si CF, Struik PC, Luo WH, Li G, …, Pan GX (2016) Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Glob Chang Biol 22:856–874

    Google Scholar 

  • Caine RS, Yin XJ, Sloan J, Harrison EL, Mohammed U, Fulton T, Biswal AK, Dionora J, …, Gray JE (2019) Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytol 221:371–384

    Google Scholar 

  • Casson S, Gray JE (2008) Influence of environmental factors on stomatal development. New Phytol 178:9–23

    Article  CAS  PubMed  Google Scholar 

  • Casson SA, Hetherington AM (2010) Environmental regulation of stomatal development. Curr Opin Plant Biol 13:90–95

    Article  CAS  PubMed  Google Scholar 

  • Chapin FS (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260

    Article  CAS  Google Scholar 

  • Chater C, Peng K, Movahedi M, Dunn JA, Walker HJ, Liang YK, Mclachlan DH, Casson S, …, Hetherington AM (2015) Elevated CO2-induced responses in stomata require ABA and ABA signaling. Curr Biol 25:2709–2716

    Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought – from genes to the whole plant. Funct Plant Biol 30:239–264

    Google Scholar 

  • Chaves MM, Zarrouk O, Francisco R, Costa JM, Santos T, Regalado AP, Rodrigues ML, Lopes CM (2010) Grapevine under deficit irrigation: hints from physiological and molecular data. Ann Bot 105:661–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Dodd IC, Davies WJ, Wilkinson S (2013) Ethylene limits abscisic acid- or soil drying-induced stomatal closure in aged wheat leaves. Plant Cell Environ 36:1850–1859

    Article  CAS  PubMed  Google Scholar 

  • Claeys H, Inze D (2013) The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol 162:1768–1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2002) Improving intrinsic water-use efficiency and crop yield. Crop Sci 42:122–131

    PubMed  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2002) Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol 129:1773–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford AJ, Mclachlan DH, Hetherington AM, Franklin KA (2012) High temperature exposure increases plant cooling capacity. Curr Biol 22:R396–R397

    Article  CAS  PubMed  Google Scholar 

  • Croxdale JL (2000) Stomatal patterning in angiosperms. Am J Bot 87:1069–1080

    Article  CAS  PubMed  Google Scholar 

  • Doheny-Adams T, Hunt L, Franks PJ, Beerling DJ, Gray JE (2012) Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philos Trans R Soc B Biol Sci 367:547–555

    Article  CAS  Google Scholar 

  • Dow GJ, Bergmann DC (2014) Patterning and processes: how stomatal development defines physiological potential. Curr Opin Plant Biol 21:67–74

    Article  CAS  PubMed  Google Scholar 

  • Drake PL, Froend RH, Franks PJ (2013) Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. J Exp Bot 64:495–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drew AP, Bazzaz FA (1982) Effects of night temperature on daytime stomatal conductance in early and late successional plants. Oecologia 54:76–79

    Article  CAS  PubMed  Google Scholar 

  • Eamus D, Fenton R, Wilson JM (1983) Stomatal behavior and water relations of chilled Phaseolus vulgaris L and Pisum sativum L. J Exp Bot 34:434–441

    Article  Google Scholar 

  • Easterling DR, Horton B, Jones PD, Peterson TC, Karl TR, Parker DE, Salinger MJ, Razuvayev V, …, Folland CK (1997) Maximum and minimum temperature trends for the globe. Science 277:364–367

    Google Scholar 

  • Edwards D, Kerp H, Hass H (1998) Stomata in early land plants: an anatomical and ecophysiological approach. J Exp Bot 49:255–278

    Article  Google Scholar 

  • Elliott-Kingston C, Haworth M, Yearsley JM, Batke SP, Lawson T, McElwain JC (2016) Does size matter? Atmospheric CO2 may be a stronger driver of stomatal closing rate than stomatal size in taxa that diversified under low CO2. Front Plant Sci 7:1253

    Article  PubMed  PubMed Central  Google Scholar 

  • Engineer CB, Hashimoto-Sugimoto M, Negi J, Israelsson-Nordstrom M, Azoulay-Shemer T, Rappel W-J, Iba K, Schroeder JI (2016) CO2 Sensing and CO2 peculation of Stomatal Conductance: Advances and Open Questions. Trends Plant Sci 21:16–30

    Article  CAS  PubMed  Google Scholar 

  • Evans JR, Kaldenhoff R, Genty B, Terashima I (2009) Resistances along the CO2 diffusion pathway inside leaves. J Exp Bot 60:2235–2248

    Article  CAS  PubMed  Google Scholar 

  • FAO (2015) Towards a Water and Food Secure Future: Critical Perspectives for Policy-Makers. Natural Resources and Environment Department.

    Google Scholar 

  • Faralli M, Grove IG, Hare MC, Kettlewell PS, Fiorani F (2017) Rising CO2 from historical concentrations enhances the physiological performance of Brassica napus seedlings under optimal water supply but not under reduced water availability. Plant Cell Environ 40:317–325

    Article  CAS  PubMed  Google Scholar 

  • Faralli M, Cockram J, Ober E, Wall S, Galle A, van Rie J, Raines C, Lawson T (2019a) Genotypic, developmental and environmental effects on the rapidity of gs in wheat: impacts on carbon gain and water-use efficiency. Front Plant Sci 10:492

    Article  PubMed  PubMed Central  Google Scholar 

  • Faralli M, Matthews J, Lawson T (2019b) Exploiting natural variation and genetic manipulation of stomatal conductance for crop improvement. Curr Opin Plant Biol 49:1–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Faralli M, Williams K, Han J, Corke F, Doonan J, Kettlewell P (2019c) Water-saving traits can protect wheat grain number under progressive soil drying at the meiotic stage: a phenotyping approach. J Plant Growth Regul:1–12

    Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 33:317–345

    Article  CAS  Google Scholar 

  • Fennell A, Markhart AH (1998) Rapid acclimation of root hydraulic conductivity to low temperature. J Exp Bot 49:879–884

    Article  CAS  Google Scholar 

  • Field CB, Jackson RB, Mooney HA (1995) Stomatal responses to increased CO2 - Implications from the plant to the global scale. Plant Cell Environ 18:1214–1225

    Article  Google Scholar 

  • Fischer RA, Rees D, Sayre KD, Lu ZM, Condon AG, Saavedra AL (1998) Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci 38:1467–1475

    Article  Google Scholar 

  • Fitzgerald GJ, Tausz M, O’Leary G, Mollah MR, Tausz-Posch S, Seneweera S, Mock I, Low M, …, Norton RM (2016) Elevated atmospheric CO2 can dramatically increase wheat yields in semi-arid environments and buffer against heat waves. Glob Chang Biol 22:2269–2284

    Google Scholar 

  • Franks PJ, Beerling DJ (2009) Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proc Natl Acad Sci U S A 106:10343–10347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franks PJ, Farquhar GD (2001) The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana. Plant Physiol 125:935–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franks PJ, Farquhar GD (2007) The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiol 143:78–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franks PJ, Doheny-Adams TW, Britton-Harper ZJ, Gray JE (2015) Increasing water-use efficiency directly through genetic manipulation of stomatal density. New Phytol 207:188–195

    Article  CAS  PubMed  Google Scholar 

  • Gamage D, Thompson M, Sutherland M, Hirotsu N, Makino A, Seneweera S (2018) New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentration. Plant Cell Environ 41:1233–1246

    Article  CAS  PubMed  Google Scholar 

  • Gay AP, Hurd RG (1975) Influence of light on stomatal density on tomato. New Phytol 75:37–46

    Article  Google Scholar 

  • Geng SS, Misra BB, De Armas E, Huhman DV, Alborn HT, Sumner LW, Chen SX (2016) Jasmonate-mediated stomatal closure under elevated CO2 revealed by time-resolved metabolomics. Plant J 88:947–962

    Article  CAS  PubMed  Google Scholar 

  • Gwray JE, Holroyd GH, van der Lee FM, Bahrami AR, Sijmons PC, Woodward FI, Schuch W, Heterington AM (2000) The HIC signalling pathway links CO2 perception to stomatal development. Nature 408:713–716

    Google Scholar 

  • Gray SB, Dermody O, Klein SP, Locke AM, McGrath JM, Paul RE, Rosenthal DM, Ruiz-Vera UM, …, Leakey ADB (2016) Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat Plants 2

    Google Scholar 

  • Guan XK, Song L, Wang TC, Turner NC, Li FM (2015) Effect of drought on the gas exchange, chlorophyll fluorescence and yield of six different-era spring wheat cultivars. J Agronomy Crop Sci 201:253–266

    Article  CAS  Google Scholar 

  • Hachez C, Milhiet T, Heinen RB, Chaumont F (2017) Roles of Aquaporins in Stomata. Plant Acquaporins. Springer, Netherlands

    Google Scholar 

  • Han SK, Torii KU (2016) Lineage-specific stem cells, signals and asymmetries during stomatal development. Development 143:1259–1270

    Article  CAS  PubMed  Google Scholar 

  • Hara K, Kajita R, Torii KU, Bergmann DC, Kakimoto T (2007) The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Genes Dev 21:1720–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara K, Yokoo T, Kajita R, Onishi T, Yahata S, Peterson KM, Torii KU, Kakimoto T (2009) Epidermal Cell Density is Autoregulated via a Secretory Peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis Leaves. Plant Cell Physiol 50:1019–1031

    Article  CAS  PubMed  Google Scholar 

  • Harb A, Krishnan A, Ambavaram MMR, Pereira A (2010) Molecular and physiological analysis of drought stress in arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154:1254–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Climate Extrem 10:4–10

    Article  Google Scholar 

  • Hatfield JL, Boote KJ, Kimball BA, Ziska LH, Izaurralde RC, Ort D, Thomson AM, Wolfe D (2011) Climate impacts on agriculture: implications for crop production. Agron J 103:351–370

    Article  Google Scholar 

  • Hepworth C, Caine RS, Harrison EL, Sloant J, Gray JE (2018) Stomatal development: focusing on the grasses. Curr Opin Plant Biol 41:1–7

    Article  PubMed  Google Scholar 

  • Herzog M, Striker GG, Colmer TD, Pedersen O (2016) Mechanisms of waterlogging tolerance in wheat - a review of root and shoot physiology. Plant Cell Environ 39:1068–1086

    Article  CAS  PubMed  Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908

    Article  CAS  PubMed  Google Scholar 

  • Hill KE, Guerin GR, Hill RS, Watling JR (2014) Temperature influences stomatal density and maximum potential water loss through stomata of Dodonaea viscosa subsp angustissima along a latitude gradient in southern Australia. Aus J Botany 62:657–665

    Article  Google Scholar 

  • Honour SJ, Webb AAR, Mansfield TA (1995) The responses of stomata to abscisic acid and temperature are interrelated. Philos Trans R Soc B Biol Sci 259:301–306

    Article  CAS  Google Scholar 

  • Hu HH, Boisson-Dernier A, Israelsson-Nordstrom M, Bohmer M, Xue SW, Ries A, Godoski J, Kuhn JM, Schroeder JI (2010) Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nat Cell Biol 12:87–U234

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Yang QY, Huang W, Zhang SB, Hu H (2014) Effects of temperature on leaf hydraulic architecture of tobacco plants. Planta 240:489–496

    Article  CAS  PubMed  Google Scholar 

  • Huang BR, Johnson JW, Nesmith S, Bridges DC (1994) Growth, physiological and anatomical responses of 2 wheat genotypes to waterlogging and nutrient supply. J Exp Bot 45:193–202

    Article  Google Scholar 

  • Hughes J, Hepworth C, Dutton C, Dunn JA, Hunt L, Stephens J, Waugh R, Cameron DD, Gray JE (2017) Reducing stomatal density in barley improves drought tolerance without impacting on yield. Plant Physiol 174:776–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hundertmark M, Hincha DK (2008) LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9

    Google Scholar 

  • Hunt L, Gray JE (2009) The signaling peptide EPF2 controls asymmetric cell divisions during stomatal development. Curr Biol 19:864–869

    Article  CAS  PubMed  Google Scholar 

  • Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men SN, Wang LC (2018) Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front Plant Sci 9

    Google Scholar 

  • Iizumi T, Furuya J, Shen ZH, Kim W, Okada M, Fujimori S, Hasegawa T, Nishimori M (2017) Responses of crop yield growth to global temperature and socioeconomic changes. Sci Rep 7

    Google Scholar 

  • Ilan N, Moran N, Schwartz A (1995) The role of potassium channels in the temperature control of stomatal aperture. Plant Physiol 108:1161–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue S, Kinoshita T (2017) Blue light regulation of stomatal opening and the plasma membrane H+-ATPase. Plant Physiol 174:531–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva

    Google Scholar 

  • Johnsson M, Issaias S, Brogardh T, Johnsson A (1976) Rapid blue-light-induced transpiration response restricted to plants with grass-like stomata. Physiol Plant 36:229–232

    Article  Google Scholar 

  • Jones HG (1977) Transpiration in barley lines with differing stomatal frequencies. J Exp Bot 28:162–168

    Article  Google Scholar 

  • Jones BG, Kandel WA (1992) Population-growth, urbanization, and disaster risk and vulnerability in metropolitan areas – a conceptual framework. Environ Management Urban Vulnerability 168:51–76

    Google Scholar 

  • Jumrani K, Bhatia VS, Pandey GP (2017) Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean. Photosynth Res 131:333–350

    Article  CAS  PubMed  Google Scholar 

  • Kang Y, Outlaw WH, Andersen PC, Fiore GB (2007) Guard-cell apoplastic sucrose concentration – a link between leaf photosynthesis and stomatal aperture size in the apoplastic phloem loader Vicia faba L. Plant Cell Environ 30:551–558

    Google Scholar 

  • Kellogg EA (2013) C-4 photosynthesis. Curr Biol 23:R594–R599

    Article  CAS  PubMed  Google Scholar 

  • Kelly G, Moshelion M, David-Schwartz R, Halperin O, Wallach R, Attia Z, Belausov E, Granot D (2013) Hexokinase mediates stomatal closure. Plant J 75:977–988

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Sicher RC, Bae H, Gitz DC, Baker JT, Timlin DJ, Reddy VR (2006) Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment. Glob Chang Biol 12:588–600

    Article  Google Scholar 

  • Kimball BA, Kobayashi K, Bindi M (2002) Responses of Agricultural Crops to Free-Air CO2 Enrichment. Elsevier, Amsterdam

    Book  Google Scholar 

  • Klay I, Gouia S, Lu M, Mila I, Khoudi H, Bernadac A, Bouzayen M, Pirrello J (2018) Ethylene Response Factors (ERF) are differentially regulated by different abiotic stress types in tomato plants. Plant Sci 274:137–145

    Article  CAS  PubMed  Google Scholar 

  • Knapp AK (1993) Gas-exchange dynamics in C-3 and C-4 grasses – consequences of differences in stomatal conductance. Ecology 74:113–123

    Google Scholar 

  • Kumar U, Quick WP, Barrios M, Cruz PCS, Dingkuhn M (2017) Atmospheric CO2 concentration effects on rice water use and biomass production. Plos One 12

    Google Scholar 

  • Laanemets K, Brandt B, Li JL, Merilo E, Wang YF, Keshwani MM, Taylor SS, Kollist H, Schroeder JI (2013) Calcium-dependent and -independent stomatal signaling network and compensatory feedback control of stomatal opening via Ca2+ sensitivity priming. Plant Physiol 163:504–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawlor DW (2013) Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J Exp Bot 64:83–108

    Article  CAS  PubMed  Google Scholar 

  • Lawson T, Blatt MR (2014) Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol 164:1556–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson T, Vialet-Chabrand S (2019) Speedy stomata, photosynthesis and plant water use efficiency. New Phytol 221:93–98

    Article  PubMed  Google Scholar 

  • Lawson T, Von Caemmerer S (2010) Photosynthesis and stomatal behaviour. In: Baroli I (ed) Progress in Botany. Springer, Netherlands

    Google Scholar 

  • Lawson T, Weyers J (1999) Spatial and temporal variation in gas exchange over the lower surface of Phaseolus vulgaris L. primary leaves. J Exp Bot 50:1381–1391

    Article  CAS  Google Scholar 

  • Lawson T, Oxborough K, Morison JIL, Baker NR (2003) The responses of guard and mesophyll cell photosynthesis to CO2, O2, light, and water stress in a range of species are similar. J Exp Bot 54:1743–1752

    Article  CAS  PubMed  Google Scholar 

  • Lawson T, Kramer DM, Raines CA (2012) Improving yield by exploiting mechanisms underlying natural variation of photosynthesis. Curr Opin Biotechnol 23:215–220

    Article  CAS  PubMed  Google Scholar 

  • Lawson T, Simkin AJ, Kelly G, Granot D (2014) Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour. New Phytol 203:1064–1081

    Article  CAS  PubMed  Google Scholar 

  • Leakey ADB (2009) Rising atmospheric carbon dioxide concentration and the future of C-4 crops for food and fuel. Philos Trans R Soc B Biol Sci 276:2333–2343

    CAS  Google Scholar 

  • Li Y, Ye W, Wang M, Yan X (2009) Climate change and drought: a risk assessment of crop-yield impacts. Climate Res 39:31–46

    Article  CAS  Google Scholar 

  • Li XN, Cai J, Liu FL, Dai TB, Cao WX, Jiang D (2014) Physiological, proteomic and transcriptional responses of wheat to combination of drought or waterlogging with late spring low temperature. Funct Plant Biol 41:690–703

    Article  CAS  PubMed  Google Scholar 

  • Lipiec J, Doussan C, Nosalewicz A, Kondracka K (2013) Effect of drought and heat stresses on plant growth and yield: a review. Int Agrophysic 27:463–477

    Article  Google Scholar 

  • Lu ZM, Quinones MA, Zeiger E (2000) Temperature dependence of guard cell respiration and stomatal conductance co-segregate in an F-2 population of Pima cotton. Aus J Plant Physiol 27:457–462

    Google Scholar 

  • Macholdt J, Honermeier B (2016) Variety choice in crop production for climate change adaptation: farmer evidence from Germany. Outlook Agriculture 45:117–123

    Article  Google Scholar 

  • Maclean J, Hardy B, Hettel G (2013) Rice Almanac: Source Book for One of the Most Important Economic Activities on Earth. IRRI, Los Baños

    Google Scholar 

  • Mansfield TA, Hetherington AM, Atkinson CJ (1990) Some current aspects of stomatal physiology. Annu Rev Plant Physiol Plant Mol Biol 41:55–75

    Article  CAS  Google Scholar 

  • Matthews JSA, Vialet-Chabrand S, Lawson T (2018) Acclimation to fluctuating light impacts the rapidity of response and diurnal rhythm of stomatal conductance. Plant Physiol 176:1939–1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAdam SAM, Brodribb TJ (2014) Separating active and passive influences on stomatal control of transpiration. Plant Physiol 164:1578–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAdam SAM, Brodribb TJ (2015) The evolution of mechanisms driving the stomatal response to vapor pressure deficit. Plant Physiol 167:833–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAusland L, Vialet-Chabrand S, Davey P, Baker NR, Brendel O, Lawson T (2016) Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. New Phytol 211:1209–1220

    Article  PubMed  PubMed Central  Google Scholar 

  • McElwain JC, Chaloner WG (1995) Stomatal density and index of fossil plants track atmospheric carbon dioxide in the paleozoic. Ann Bot 76:389–395

    Article  Google Scholar 

  • McGranahan DA, Poling BN (2018) Trait-based responses of seven annual crops to elevated CO2 and water limitation. Renew Agriculture Food System 33:259–266

    Article  Google Scholar 

  • McGuire S (2013) WHO, World Food Programme, and International Fund for Agricultural Development. 2012. The State of Food Insecurity in the World 2012. Economic growth is necessary but not sufficient to accelerate reduction of hunger and malnutrition. Rome, FAO. Adv Nutrition 4:126–127

    Article  Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, Mcavaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset – a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394

    Google Scholar 

  • Melkonian J, Yu LX, Setter TL (2004) Chilling responses of maize (Zea mays L.) seedlings: root hydraulic conductance, abscisic acid, and stomatal conductance. J Exp Bot 55:1751–1760

    Article  CAS  PubMed  Google Scholar 

  • Merilo E, Jalakas P, Kollist H, Brosche M (2015) The role of ABA recycling and transporter proteins in rapid stomatal responses to reduced air humidity, elevated CO2, and exogenous ABA. Mol Plant 8:657–659

    Article  CAS  PubMed  Google Scholar 

  • Merilo E, Yarmolinsky D, Jalakas P, Parik H, Tulva I, Rasulov B, Kilk K, Kollist H (2018) Stomatal VPD response: there is more to the story than ABA. Plant Physiol 176:851–864

    Article  CAS  PubMed  Google Scholar 

  • Mohammed U, Caine RS, Atkinson JA, Harrison EL, Wells D, Chater CC, Gray JE, Swarup R, Murchie EH (2019) Rice plants overexpressing OsEPF1 show reduced stomatal density and increased root cortical aerenchyma formation. Sci Rep 9

    Google Scholar 

  • Morison JIL, Baker NR, Mullineaux PM, Davies WJ (2008) Improving water use in crop production. Philos Trans R Soc B Biol Sci 363:639–658

    Article  CAS  Google Scholar 

  • Mott KA (1988) Do stomata respond to CO2 concentrations other than intercellular. Plant Physiol 86:200–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mott KA, Peak D (2013) Testing a vapour-phase model of stomatal responses to humidity. Plant Cell Environ 36:936–944

    Article  CAS  PubMed  Google Scholar 

  • Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012) Closing yield gaps through nutrient and water management. Nature 490:254–257

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Sirault XRR, Furbank RT, Jones HG (2010) New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J Exp Bot 61:3499–3507

    Article  CAS  PubMed  Google Scholar 

  • Murray RR, Emblow MSM, Hetherington AM, Foster GD (2016) Plant virus infections control stomatal development. Sci Rep 6

    Google Scholar 

  • Nadeau JA, Sack FD (2002) Stomatal development in Arabidopsis. The Arabidopsis Book 1:e0066–e0066

    Article  PubMed  PubMed Central  Google Scholar 

  • Najeeb U, Bange MP, Tan DKY, Atwell BJ (2015) Consequences of waterlogging in cotton and opportunities for mitigation of yield losses. Aob Plants 7

    Google Scholar 

  • Narayanan S, Prasad PVV, Fritz AK, Boyle DL, Gill BS (2015) Impact of high night-time and high daytime temperature stress on winter wheat. J Agronomy Crop Sci 201:206–218

    Article  CAS  Google Scholar 

  • Negin B, Moshelion M (2017) The advantages of functional phenotyping in pre-field screening for drought-tolerant crops. Funct Plant Biol 44:107–118

    Article  Google Scholar 

  • Oren R, Sperry JS, Katul GG, Pataki DE, Ewers BE, Phillips N, Schafer KVR (1999) Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ 22:1515–1526

    Article  Google Scholar 

  • Osborne CP (2016) Crop yields CO2 fertilization dries up. Nature Plants 2

    Google Scholar 

  • Outlaw WH (2003) Integration of cellular and physiological functions of guard cells. Crit Rev Plant Sci 22:503–529

    Article  Google Scholar 

  • Pantin F, Monnet F, Jannaud D, Costa JM, Renaud J, Muller B, Simonneau T, Genty B (2013) The dual effect of abscisic acid on stomata. New Phytol 197:65–72

    Article  CAS  PubMed  Google Scholar 

  • Pardossi A, Vernieri P, Tognoni F (1992) Involvement of abscisic acid in regulating water status in Phaseolus vulgaris L during chilling. Plant Physiol 100:1243–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasternak D, Wilson GL (1972) Aftereffects of night temperatures on stomatal behaviour and photosynthesis of sorghum. New Phytol 71:683

    Article  Google Scholar 

  • Peng SB, Huang JL, Sheehy JE, Laza RC, Visperas RM, Zhong XH, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A 101:9971–9975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterhansel C, Horst I, Niessen M, Blume C, Kebeish R, Kürkcüoglu S, Kreuzaler F (2010) Photorespiration. The Arabidopsis Book. Am SocPlant Biol, Rockville.

    Google Scholar 

  • Peterson KM, Rychel AL, Torii KU (2010) Out of the mouths of plants: the molecular basis of the evolution and diversity of stomatal development. Plant Cell 22:296–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pillitteri LJ, Peterson KM, Horst RJ, Torii KU (2011) Molecular profiling of stomatal meristemoids reveals new component of asymmetric cell division and commonalities among stem cell populations in Arabidopsis. Plant Cell 23:3260–3275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ploschuk RA, Grimoldi AA, Ploschuk EL, Striker GG (2017) Growth during recovery evidences the waterlogging tolerance of forage grasses. Crop Pasture Sci 68:574–582

    Article  Google Scholar 

  • Ploschuk RA, Miralles DJ, Colmer TD, Ploschuk EL, Striker GG (2018) Waterlogging of winter crops at early and late stages: impacts on leaf physiology, growth and yield. Front Plant Sci 9

    Google Scholar 

  • Pociecha E, Koscielniak J, Filek W (2008) Effects of root flooding and stage of development on the growth and photosynthesis of field bean (Vicia faba L. minor). Acta Physiologiae Plantarum 30:529–535

    Article  CAS  Google Scholar 

  • Poole I, Lawson T, Weyers JDB, Raven JA (2000) Effect of elevated CO2 on the stomatal distribution and leaf physiology of Alnus glutinosa. New Phytol 145:511–521

    Article  CAS  PubMed  Google Scholar 

  • Porter JR, Semenov MA (2005) Crop responses to climatic variation. Philos Trans R Soc B Biol Sci 360:2021–2035

    Article  Google Scholar 

  • Prasad PVV, Pisipati SR, Ristic Z, Bukovnik U, Fritz AK (2008) Impact of nighttime temperature on physiology and growth of spring wheat. Crop Sci 48:2372–2380

    Article  Google Scholar 

  • Qu MN, Hamdani S, Li WZ, Wang SM, Tang JY, Chen Z, Song QF, Li M, …, Zhu XG (2016) Rapid stomatal response to fluctuating light: an under-explored mechanism to improve drought tolerance in rice. Funct Plant Biol 43:727–738

    Google Scholar 

  • Raissig MT, Matos JL, Gil MXA, Kornfeld A, Bettadapur A, Abrash E, Allison HR, Badgley G, …, Bergmann DC (2017) Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata. Science 355:1215–1218

    Google Scholar 

  • Raven JA (1977) The Evolution of Vascular Land Plants in Relation to Supracellular Transport Processes. Academic Press, London

    Book  Google Scholar 

  • Raven JA (2002) Selection pressures on stomatal evolution. New Phytol 153:371–386

    Article  CAS  PubMed  Google Scholar 

  • Raven JA (2014) Speedy small stomata? J Exp Bot 65:1415–1424

    Article  CAS  PubMed  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. Plos One 8

    Google Scholar 

  • Rizhsky L, Liang HJ, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizhsky L, Liang HJ, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roelfsema MRG, Hedrich R (2005) In the light of stomatal opening: new insights into ‘the Watergate’. New Phytol 167:665–691

    Article  CAS  PubMed  Google Scholar 

  • Rogiers SY, Hardie WJ, Smith JP (2011) Stomatal density of grapevine leaves (Vitis vinifera L.) responds to soil temperature and atmospheric carbon dioxide. Aus J Grape Wine Res 17:147–152

    Article  Google Scholar 

  • Rollins JA, Habte E, Templer SE, Colby T, Schmidt J, Von Korff M (2013) Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). J Exp Bot 64:3201–3212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudall PJ, Hilton J, Bateman RM (2013) Several developmental and morphogenetic factors govern the evolution of stomatal patterning in land plants. New Phytol 200:598–614

    Article  PubMed  Google Scholar 

  • Sachs T (1991) Pattern Formation in Plant Tissues. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sage RF, Kubien DS (2007) The temperature response of C-3 and C-4 photosynthesis. Plant Cell Environ 30:1086–1106

    Article  CAS  PubMed  Google Scholar 

  • Sage RF, Sharkey TD (1987) The effect of temperature on the occurrence of O2 and CO2 insensitive photosynthesis in field-grown plants. Plant Physiol 84:658–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schafer N, Maierhofer T, Herrmann J, Jorgensen ME, Lind C, Von Meyer K, Lautner S, Fromm J, …, Hedrich R (2018) A Tandem Amino Acid Residue Motif in Guard Cell SLAC1 Anion Channel of Grasses Allows for the Control of Stomatal Aperture by Nitrate. Curr Biol 28:1370–U145

    Google Scholar 

  • Serna L, Torres-Contreras J, Fenoll C (2002) Clonal analysis of stomatal development and patterning in Arabidopsis leaves. Dev Biol 241:24–33

    Article  CAS  PubMed  Google Scholar 

  • Shi W, Yin X, Struik PC, Xie F, Schmidt RC, Jagadish KSV (2016) Grain yield and quality responses of tropical hybrid rice to high night-time temperature. Field Crop Res 190:18–25

    Article  Google Scholar 

  • Shimizu H, Katayama K, Koto T, Torii K, Araki T, Endo M (2015) Decentralized circadian clocks process thermal and photoperiodic cues in specific tissues. Nature Plants 1:15163

    Article  PubMed  Google Scholar 

  • Skelton RP, West AG, Dawson TE (2015) Predicting plant vulnerability to drought in biodiverse regions using functional traits. Proc Natl Acad Sci U S A 112:5744–5749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugano SS, Shimada T, Imai Y, Okawa K, Tamai A, Mori M, Hara-Nishimura I (2010) Stomagen positively regulates stomatal density in Arabidopsis. Nature 463:241–U130

    Article  CAS  PubMed  Google Scholar 

  • Sussmilch FC, Roelfsema MRG, Hedrich R (2019) On the origins of osmotically driven stomatal movements. New Phytol 222:84–90

    Article  PubMed  Google Scholar 

  • Taiz L, Zeiger E, Møller IM, Murphy AS (2018) Plant Physiology and Development. Oxford University Press, Oxford

    Google Scholar 

  • Teskey R, Wertin T, Bauweraerts I, Ameye M, McGuire MA, Steppe K (2015) Responses of tree species to heat waves and extreme heat events. Plant Cell Environ 38:1699–1712

    Article  PubMed  Google Scholar 

  • Urban J, Ingwers M, McGuire MA, Teskey RO (2017a) Stomatal conductance increases with rising temperature. Plant Signal Behav 12:e1356534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Urban J, Ingwers MW, Mcguire MA, Teskey RO (2017b) Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra. J Exp Bot 68:1757–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vahisalu T, Kollist H, Wang YF, Nishimura N, Chan WY, Valerio G, Lamminmaki A, Brosche M, …, Kangasjarvi J (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452:487–U15

    Google Scholar 

  • Valladares F, Martinez-Ferri E, Balaguer L, Perez-Corona E, Manrique E (2000) Low leaf-level response to light and nutrients in Mediterranean evergreen oaks: a conservative resource-use strategy? New Phytol 148:79–91

    Article  CAS  PubMed  Google Scholar 

  • Van Ittersum MK, Cassman KG, Grassini P, Wolf J, Tittonell P, Hochman Z (2013) Yield gap analysis with local to global relevance – a review. Field Crop Res 143:4–17

    Google Scholar 

  • Vaten A, Bergmann DC (2012) Mechanisms of stomatal development: an evolutionary view. Evodevo 3

    Google Scholar 

  • Vialet-Chabrand S, Dreyer E, Brendel O (2013) Performance of a new dynamic model for predicting diurnal time courses of stomatal conductance at the leaf level. Plant Cell Environ 36:1529–1546

    Article  PubMed  Google Scholar 

  • Vialet-Chabrand S, Matthews JSA, Brendel O, Blatt MR, Wang Y, Hills A, Griffiths H, Rogers S, Lawson T (2016) Modelling water use efficiency in a dynamic environment: an example using Arabidopsis thaliana. Plant Sci 251:65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vialet-Chabrand S, Hills A, Wang YZ, Griffiths H, Lew VL, Lawson T, Blatt MR, Rogers S (2017a) Global sensitivity analysis of Onguard models identifies key hubs for transport interaction in stomatal dynamics. Plant Physiol 174:680–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vialet-Chabrand S, Matthews JSA, Simkin AJ, Raines CA, Lawson T (2017b) Importance of fluctuations in light on plant photosynthetic acclimation. Plant Physiol 173:2163–2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vialet-Chabrand SRM, Matthews JSA, McAusland L, Blatt MR, Griffiths H, Lawson T (2017c) Temporal dynamics of stomatal behavior: modeling and implications for photosynthesis and water use. Plant Physiol 174:603–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vile D, Pervent M, Belluau M, Vasseur F, Bresson J, Muller B, Granier C, Simonneau T (2012) Arabidopsis growth under prolonged high temperature and water deficit: independent or interactive effects? Plant Cell Environ 35:702–718

    Article  PubMed  Google Scholar 

  • Von Caemmerer S, Evans JR (2015) Temperature responses of mesophyll conductance differ greatly between species. Plant Cell Environ 38:629–637

    Article  CAS  Google Scholar 

  • Waadt R, Manalansan B, Rauniyar N, Munemasa S, Booker MA, Brandt B, Waadt C, Nusinow DA, …, Schroeder JI (2015) Identification of Open Stomatal-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses. Plant Physiol 169:760

    Google Scholar 

  • Wan JX, Griffiths R, Ying JF, Mccourt P, Huang YF (2009) Development of drought-tolerant canola (Brassica napus L.) through genetic modulation of ABA-mediated stomatal responses. Crop Sci 49:1539–1554

    Article  CAS  Google Scholar 

  • Wang Y, Noguchi K, Terashima I (2008) Distinct light responses of the adaxial and abaxial stomata in intact leaves of Helianthus annuus L. Plant Cell Environ 31:1307–1316

    Article  CAS  PubMed  Google Scholar 

  • Wang LJ, Li XF, Chen SY, Liu GS (2009) Enhanced drought tolerance in transgenic Leymus chinensis plants with constitutively expressed wheat TaLEA (3). Biotechnol Lett 31:313–319

    Article  CAS  PubMed  Google Scholar 

  • Welch JR, Vincent JR, Auffhammer M, Moya PF, Dobermann A, Dawe D (2010) Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proc Natl Acad Sci U S A 107:14562–14567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weyers JDB, Paterson NW (1987) Responses of Commelina communis stomata in vitro. J Exp Bot 38:631–641

    Article  Google Scholar 

  • Wilkinson S, Clephan AL, Davies WJ (2001) Rapid low temperature-induced stomatal closure occurs in cold-tolerant Commelina communis leaves but not in cold-sensitive tobacco leaves, via a mechanism that involves apoplastic calcium but not abscisic acid. Plant Physiol 126:1566–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willmer C, Fricker M (1996) Stomata. Springer, Netherlands

    Book  Google Scholar 

  • Wolfe DW (1991) Low-temperature effects on early vegetative growth, leaf gas-exchange and water potential of chilling-sensitive and chilling-tolerant crop species. Ann Bot 67:205–212

    Article  Google Scholar 

  • Wong SC, Cowan IR, Farquhar GD (1979) Stomatal conductance correlates with photosynthetic capacity. Nature 282:424–426

    Article  Google Scholar 

  • Woodward FI (1987) Stomatal Numbers are sensitive to increases in CO2 from preindustrial levels. Nature 327:617–618

    Article  Google Scholar 

  • Woodward FI, Kelly CK (1995) The influences of CO2 concentration on stomatal density. New Phytol 131:311–327

    Article  Google Scholar 

  • Xu Z, Jiang Y, Jia B, Zhou G (2016) Elevated-CO2 response of stomata and its dependence on environmental factors. Front Plant Sci 7:657

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue SW, Hu HH, Ries A, Merilo E, Kollist H, Schroeder JI (2011) Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell. EMBO J 30:1645–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto Y, Negi J, Wang C, Isogai Y, Schroeder JI, Iba K (2016) The transmembrane region of guard cell SLAC1 channels perceives CO2 signals via an ABA-independent pathway in Arabidopsis. Plant Cell 28:557–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zandalinas SI, Mittler R, Balfagon D, Arbona V, Gomez-Cadenas A (2018) Plant adaptations to the combination of drought and high temperatures. Physiol Plant 162:2–12

    Article  CAS  PubMed  Google Scholar 

  • Zhang DY, Chen GY, Gong ZY, Chen J, Yong ZH, Zhuo JG, Xu DQ (2008) Ribulose-1,5-bisphosphate regeneration limitation in rice leaf photosynthetic acclimation to elevated CO2. Plant Sci 175:348–355

    Google Scholar 

  • Zhao C, Liu B, Piao SL, Wang XH, Lobell DB, Huang Y, Huang MT, Yao YT, …, Asseng S (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci USA 114:9326–9331

    Google Scholar 

  • Zheng YP, Xu M, Hou RX, Shen RC, Qiu S, Ouyang Z (2013) Effects of experimental warming on stomatal traits in leaves of maize (Zea may L.). Ecol Evol 3:3095–3111

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu XC, Cao QJ, Sun LY, Yang XQ, Yang WY, Zhang H (2018) Stomatal Conductance and Morphology of Arbuscular Mycorrhizal Wheat Plants Response to_Elevated CO2 and NaCl Stress. Front Plant Sci 9

    Google Scholar 

  • Ziegler H (1987) The evolution of stomata. Stomatal Function 29

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracy Lawson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stevens, J., Faralli, M., Wall, S., Stamford, J.D., Lawson, T. (2021). Chapter 2 Stomatal Responses to Climate Change. In: Becklin, K.M., Ward, J.K., Way, D.A. (eds) Photosynthesis, Respiration, and Climate Change . Advances in Photosynthesis and Respiration, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-030-64926-5_2

Download citation

Publish with us

Policies and ethics