Skip to main content

Hierarchical Representation and Graph Convolutional Networks for the Prediction of Protein–Protein Interaction Sites

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2020)

Abstract

Proteins carry out a broad range of functions in living organisms usually by interacting with other molecules. Protein–protein interaction (PPI) is an important base for understanding disease mechanisms and for deciphering rational drug design. The identification of protein interactions using experimental methods is expensive and time-consuming. Therefore, efficient computational methods to predict PPIs are of great value to biologists.

This work focuses on predicting protein interfaces and investigates the effect of different molecular representations in the prediction of such sites. We introduce a molecular representation according to its hierarchical structure. Therefore, proteins are abstracted in terms of spatial and sequential neighboring among amino acid pairs, while we use a deep learning framework, Graph Convolutional Networks, for data training. We tested the framework on two classes of proteins, Antibody–Antigen and Antigen–Bound Antibody, extracted from the Protein–Protein Docking Benchmark 5.0. The obtained results in terms of the area under the ROC curve (AU-ROC) on these classes are remarkable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berggård, T., Linse, S., James, P.: Methods for the detection and analysis of protein-protein interactions. Proteomics 7(16), 2833–2842 (2007)

    Article  Google Scholar 

  2. Berman, H.M., et al.: The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000). https://doi.org/10.1093/nar/28.1.235

    Article  Google Scholar 

  3. Daberdaku, S.: Structure-based antibody paratope prediction with 3D Zernike descriptors and SVM. In: Raposo, M., Ribeiro, P., Sério, S., Staiano, A., Ciaramella, A. (eds.) CIBB 2018. LNCS, vol. 11925, pp. 27–49. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-34585-3_4

    Chapter  Google Scholar 

  4. Daberdaku, S., Ferrari, C.: Exploring the potential of 3D Zernike descriptors and SVM for protein-protein interface prediction. BMC Bioinform. 19(1), 35 (2018)

    Article  Google Scholar 

  5. Daberdaku, S., Ferrari, C.: Antibody interface prediction with 3D Zernike descriptors and SVM. Bioinformatics 35(11), 1870–1876 (2019)

    Article  Google Scholar 

  6. Eyuboglu, E.S., Freeman, P.B.: Disease protein prediction with graph convolutional networks. Genetics 5, 101–113 (2004)

    Google Scholar 

  7. Fout, A., Byrd, J., Shariat, B., Ben-Hur, A.: Protein interface prediction using graph convolutional networks. In: Advances in Neural Information Processing Systems, pp. 6530–6539 (2017)

    Google Scholar 

  8. Fry, D.C.: Protein-protein interactions as targets for small molecule drug discovery. Peptide Sci.: Orig. Res. Biomol. 84(6), 535–552 (2006)

    Article  Google Scholar 

  9. Girija, S.S.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. Software available from tensorflow.org, vol. 39 (2016)

    Google Scholar 

  10. Jordan, R.A., Yasser, E.M., Dobbs, D., Honavar, V.: Predicting protein-protein interface residues using local surface structural similarity. BMC Bioinform. 13(1), 41 (2012)

    Article  Google Scholar 

  11. Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., Katayama, T., Kanehisa, M.: AAindex: amino acid index database, progress report 2008. Nucleic Acids Res. 36(suppl–1), D202–D205 (2007)

    Article  Google Scholar 

  12. Keskin, O., Tuncbag, N., Gursoy, A.: Predicting protein-protein interactions from the molecular to the proteome level. Chem. Rev. 116(8), 4884–4909 (2016)

    Article  Google Scholar 

  13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  14. Liyasova, M.S., Ma, K., Lipkowitz, S.: Molecular pathways: CBL proteins in tumorigenesis and antitumor immunity-opportunities for cancer treatment. Clin. Cancer Res. 21(8), 1789–1794 (2015)

    Article  Google Scholar 

  15. Porollo, A., Meller, J.: Prediction-based fingerprints of protein-protein interactions. Proteins: Struct. Funct. Bioinform. 66(3), 630–645 (2007)

    Article  Google Scholar 

  16. Porollo, A., Meller, J., Cai, W., Hong, H.: Computational methods for prediction of protein-protein interaction sites. Protein-Protein Interact.-Comput. Exp. Tools 472, 3–26 (2012)

    Google Scholar 

  17. Quadrini., M., Merelli., E., Piergallini., R.: Loop grammars to identify RNA structural patterns. In: Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies, Bioinformatics, vol. 3, pp. 302–309. SciTePress (2019)

    Google Scholar 

  18. Saha, I., Maulik, U., Bandyopadhyay, S., Plewczynski, D.: Fuzzy clustering of physicochemical and biochemical properties of amino acids. Amino Acids 43(2), 583–594 (2012)

    Article  Google Scholar 

  19. Touw, W.G., et al.: A series of PDB-related databanks for everyday needs. Nucleic Acids Res. 43(D1), D364–D368 (2015)

    Article  Google Scholar 

  20. Vreven, T., et al.: Updates to the integrated protein-protein interaction benchmarks: docking benchmark version 5 and affinity benchmark version 2. J. Mol. Biol. 427(19), 3031–3041 (2015)

    Article  Google Scholar 

  21. Xie, Z., Deng, X., Shu, K.: Prediction of protein-protein interaction sites using convolutional neural network and improved data sets. Int. J. Mol. Sci. 21(2), 467 (2020)

    Article  Google Scholar 

  22. Xu, W., et al.: Amyloid precursor protein-mediated endocytic pathway disruption induces axonal dysfunction and neurodegeneration. J. Clin. Investig. 126(5), 1815–1833 (2016)

    Article  Google Scholar 

  23. Xue, L.C., Dobbs, D., Honavar, V.: HomPPI: a class of sequence homology based protein-protein interface prediction methods. BMC Bioinform. 12(1), 244 (2011)

    Article  Google Scholar 

  24. Yin, S., Proctor, E.A., Lugovskoy, A.A., Dokholyan, N.V.: Fast screening of protein surfaces using geometric invariant fingerprints. Proc. Natl. Acad. Sci. 106(39), 16622–16626 (2009)

    Article  Google Scholar 

  25. Zeng, M., Zhang, F., Wu, F.X., Li, Y., Wang, J., Li, M.: Protein-protein interaction site prediction through combining local and global features with deep neural networks. Bioinformatics 36(4), 1114–1120 (2020)

    Google Scholar 

Download references

Funding

This research has been partially supported by the University of Padua project BIRD189710/18 “Reliable identification of the PPI interface in multiunit protein complexes”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Quadrini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Quadrini, M., Daberdaku, S., Ferrari, C. (2020). Hierarchical Representation and Graph Convolutional Networks for the Prediction of Protein–Protein Interaction Sites. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2020. Lecture Notes in Computer Science(), vol 12566. Springer, Cham. https://doi.org/10.1007/978-3-030-64580-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64580-9_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64579-3

  • Online ISBN: 978-3-030-64580-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics